Thu gọn B= 1+5^2+5^3+...+5^200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+2+2^2+2^3+...+2^{60}\)
=>\(2A=2+2^2+2^3+2^4+...+2^{61}\)
=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{61}\right)-\left(1+2+2^2+2^3+...+2^{60}\right)\)
=>\(A=2^{61}-1\)
b) \(B=1+3+3^2+3^3+...+3^{46}\)
=>\(3B=3+3^2+3^3+3^4+...+3^{47}\)
=>\(3B-B=\left(3+3^2+3^3+3^4+...+3^{47}\right)-\left(1+3+3^2+3^3+...+3^{46}\right)\)
=>\(2A=3^{47}-1\)
=>\(B=\frac{3^{47}-1}{2}\)
c) \(C=1+5^2+5^4+...+5^{200}\)
=>\(5^2C=5^2+5^4+5^6+...+5^{202}\)
=>\(25C=5^2+5^4+5^6+...+5^{202}\)
=>\(25C-C=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right)\)
=>\(24C=5^{202}-1\)
=>\(C=\frac{5^{202}-1}{24}\)
a) A = \(1+2+2^2+2^3+...+2^{60}\)
2A = \(2.\left(1+2+2^2+2^3+...+2^{60}\right)\)
2A = \(2+2^2+2^3+2^4+...+2^{61}\)
2A - A = \(\left(2+2^2+2^3+2^4+...+2^{61}\right)\)- \(\left(1+2+2^2+2^3+...+2^{60}\right)\)
A = \(2^{61}-1\)
b)B = \(1+3+3^2+3^3+...+3^{46}\)
3B = \(3.\left(1+3+3^2+3^3+...+3^{46}\right)\)
3B = \(3+3^2+3^3+3^4+...+3^{47}\)
3B - B = \(\left(3+3^2+3^3+3^4+...+3^{47}\right)\)- \(\left(1+3+3^2+3^3+...+3^{46}\right)\)
2B = \(3^{47}-1\)
B = \(\left(3^{47}-1\right):2\)
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
Lời giải:
$A=1+5^2+5^4+5^6+...+5^{198}+5^{200}$
$5^2A=5^2+5^4+5^6+5^8+...+5^{200}+5^{202}$
$\Rightarrow 5^2A-A=5^{202}-1$
$\Rightarrow 24A=5^{202}-1$
$\Rightarrow A=\frac{5^{202}-1}{24}$
Lơ giải:
$A=1+5^2+5^4+5^6+...+5^{198}+5^{200}$
$5^2A=5^2+5^4+5^6+5^8+...+5^{200}+5^{202}$
$\Rightarrow 5^2A-A=5^{202}-1$
$\Rightarrow 24A=5^{202}-1$
$\Rightarrow A=\frac{5^{202}-1}{24}$
1,\(A=\)\(1+2+2^2+2^3+...+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=\)\(2^{2016}-1\)
~~~Hok tốt~~~
2,\(B=3^{11}+3^{12}+3^{13}+...+3^{101}\)
\(\Rightarrow3B=3^{12}+3^{13}+3^{14}+...+3^{102}\)
\(\Rightarrow3B-B=\left(3^{12}+3^{13}+3^{14}+...+3^{102}\right)-\left(3^{11}+3^{12}+3^{13}+...+3^{101}\right)\)
\(\Rightarrow2B=3^{102}-3^{11}\)
\(\Rightarrow B=\frac{3^{102}-3^{11}}{2}\)
~~~Hok tốt~~~
\(B=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{200}{2^{200}}\)
\(2B=2\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{200}{2^{200}}\right)\)
\(2B=2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{200}{2^{199}}\)
\(2B-B=\left(2+\frac{3}{2^2}+...+\frac{200}{2^{199}}\right)-\left(1+\frac{3}{2^3}+...+\frac{200}{2^{200}}\right)\)
.... đặt A=... giiả tiếp
a)
A = 2 + 22 + 23 + 24 + ... + 2200
2A = 22 + 23 + 24 + 25 + ... + 2200
2A - A = A = 2200 - 2
b) chịu
c)
C = 4 + 42 + 43 + 44 +... + 4100
4C = 42 + 43 + 44 + 45 + ... + 4101
4C - C = 3C = 4101 - 4
\(\Rightarrow\) C = \(\frac{4^{101}-4}{3}\)
d)
D = 5 + 52 + 53 + ... + 5100
5D = 52 + 53 + 54 + ... + 5101
5D - D = 4D = 5101 - 5
\(\Rightarrow\)D = \(\frac{5^{101}-5}{4}\)