K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEF và ΔADC có 

\(\dfrac{AE}{AD}=\dfrac{AF}{AC}\left(\dfrac{3}{4}=\dfrac{6}{8}\right)\)

\(\widehat{A}\) chung

Do đó: ΔAEF∼ΔADC(c-g-c)

b) Ta có: ΔAEF∼ΔADC(cmt)

nên \(\widehat{AEF}=\widehat{ADC}\)(hai góc tương ứng) và \(\widehat{AFE}=\widehat{ACD}\)(hai góc tương ứng)

Xét ΔIDF và ΔIEC có 

\(\widehat{ICE}=\widehat{IFD}\)(cmt)

\(\widehat{DIF}=\widehat{EIC}\)(hai góc đối đỉnh)

Do đó: ΔIDF∼ΔIEC(g-g)

Suy ra: \(k=\dfrac{DF}{EC}=\dfrac{AF-AD}{AC-AE}=\dfrac{6-4}{8-3}=\dfrac{2}{5}\)

17 tháng 1 2016

1) ta có góc BAF+góc DAE=90 ĐỘ

     góc DAK +góc DAE=90 ĐỘ

=> góc BAF= góc DAK 

XÉT 2 TAM GIÁC TRÊN THEO TRƯỜNG HỢP G.C.G

=>tam giác ABF=tam giác DAK

==>AK=AF  => tam giác AKF cân tại A

2)XÉT TAM GIÁC VUÔNG KCF CÓ I LÀ TRUNG ĐIỂM CỦA CẠNH HUYỀN KF nên A,F,K thuộc đường tròn đường kính KF (1)

TƯƠNG TỰ VỚI TAM GIÁC VUÔNG AKF ==> A,K,F cùng thuộc đường tròn đường kính KF (2)

TỪ (1) và (2) ==> điều cần chứng minh

3)vì tam giác AKF cân tại A ==> AI là trung tuyến đồng thời là đường cao 

==> AI vuông góc với KF  

DO ĐÓ góc AIF=90 độ

tương tự câu 2 xét vào 2 tam giác vuông AIF và ABF ==>điều cần chứng minh

đợi một tí thí nữa mk giải típ mệt quá

17 tháng 1 2016

sao dài thế

 

Trả lời

em làm được những phần nào rồi

còn phần nào để ah chỉ cho 

Em tham khảo nha 

Chắc em chưa học hbh 

Giải : 

a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC

b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM

c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.