so sánh \(\sqrt{2012}-\sqrt{2011}\) và \(\sqrt{2011}-\sqrt{2010}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta gán : \(1992\rightarrow D\); \(1992\rightarrow A\)
\(D=D+1:A=D.\sqrt[D]{A}\)
CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.
Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.
Ta có: \(A=\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\)
\(=\sqrt{2011}-\sqrt{2010}< \sqrt{2011}.\sqrt{2010}=B\)
Vậy A<B
\(\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}\)
\(\sqrt{2011}-\sqrt{2010}=\frac{1}{\sqrt{2011}+\sqrt{2010}}\)
~~> So sánh mẫu