K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

9453729+14926284=24380010

28 tháng 6 2021

a) -Kẻ CH vuông góc với AB tại H

     Ta có: + diện tích ΔABC = 1/2 ×CH×AB

                + diện tích ΔAMC= 1/2×CH×AM

     Vì AB > AM ( AB =2AM)

=> diện tích ΔABC > diện tích ΔAMC

    - Kẻ MN vuông góc với DC tại N

=> MN=CH 

     Ta có : S ΔAMC= 1/2×CH×AM

                S ΔAMD= 1/2×MN×Am

     Vì MN=CH ( cmt)

=> diện tích ΔAMC = diện tích ΔAMD

   - Ta có : S ΔMDC=1/2×MN×CD

                 S ΔAMD=1/2×MN×AM

     Vì CD > AM ( vì AB = CD, AM < AB)

=> diện tích ΔMDC > diện tích ΔAMD

Bài này dài quá lười lm có j tự lm câu b và câu c nhé !!!!

_Học tốt_

Giải thích các bước giải:

a) Xét tam giác ABC và AMC có chung chiều cao hạ từ đỉnh C mà M là trung điểm AB nên AB = 2 x AM => S_ABC = 2 x S_AMC

Xét tam giác AMC với AMD có chung đáy AM, chiều cao hạ từ đỉnh D đáy AM = chiều cao từ đỉnh C đáy AM => S_AMC = S_AMD.

b) Nối AN và EN 

Xét các tam giác AMC và ANC đều = 1/4 diện tích hình bình hành = 15 cm2. Mặt khác 2 tam giác này có chung đáy AC => chiều cao hạ từ đỉnh M xuống đáy AC = chiều cao từ đỉnh N đáy AC.

Xét tam giác ENC và EMC chung đáy EC, chiều cao bằng nhau => S_ENC = S_EMC. (1)

Xét tam giác EDN và ENC chung đỉnh E, đáy DN = NC => S_EDN = S_ENC (2)

Xét S tam giác AMD = S_AMC (phần a đã chứng minh) có chung AME => S_AED = S_EMC (3)

Từ (1) ; (2) và (3) => S_EMC = S_ENC = S_EDN = S_AED.

Ta có S_MBC = 15 cm2 => S_ACD = 15 x 2 = 3 (cm2)

Mà S_ACD = S_ENC + S_EDN + S_AED và 3 tam giác này bằng nhau nên :

S_ENC = 30 : 3 = 10 (cm2) mà S_ENC = S_MEC.

Vậy diện tích MEC = 10 cm2.

c) Từ S_MEC = 10 cm2 => S_MEA = 15 - 10 = 5 (cm2)

Xét có chung chiều cao đỉnh M mà S_MEA/S_MCA = 5/15 = 1/3 =>đáy AE = 1/3 AC

(với cách chứng minh tương tự ta có S_NGC = 5 cm2 và GC = 1/3 AC)

Vậy EG = AC - 1/3 AC - 1/3 AC = 1/3AC

Vậy AE = EG = GC

18 tháng 3 2023

bạn ơi mình chưa hiểu câu c bạn giải chi tiết được ko

27 tháng 6 2019

mik cũng thăk măk

27 tháng 6 2019

bài này khó thật 

3 tháng 6 2021

*Hình,lời giải thì bạn tự làm , có thể sẽ có 1 bạn vẽ hình cho bạn :)

a)

\(AM=\frac{1}{2}AB\Rightarrow S_{AMC}=\frac{1}{2}S_{ABC}\)

\(\Delta AMC.\Delta AMD\Rightarrow S_{AMC}=S_{AMB}\)

Có \(d\left(D;AM\right)=d\left(C;AM\right)\)

b)

\(S_{EMC}=\frac{1}{2}S_{MBC}=\frac{1}{2}.15=7,5\left(cm^2\right)\)

c)

Bạn check lại đề phần c) nhé

3 tháng 6 2021

c) Mình làm theo đề bạn sử nhé 

Gọi O là giao điểm MN và AC

Ta có : AMND là hình bình hành

AE là trọng tâm \(\Rightarrow\)\(\Delta AMN\Rightarrow AE=\frac{2}{3}AO\)

Mà \(AO=\frac{1}{2}AC\Rightarrow AE=\frac{1}{3}AC\)

Chứng minh tương tự ta có :

 \(GC=\frac{1}{3}AC\)

\(\Rightarrow EG=\frac{1}{3}AC\)

\(\Rightarrow EG=GC=AE\)

Giải thích các bước giải:

a) Xét tam giác ABC và AMC có chung chiều cao hạ từ đỉnh C mà M là trung điểm AB nên AB = 2 x AM => S_ABC = 2 x S_AMC

Xét tam giác AMC với AMD có chung đáy AM, chiều cao hạ từ đỉnh D đáy AM = chiều cao từ đỉnh C đáy AM => S_AMC = S_AMD.

b) Nối AN và EN 

Xét các tam giác AMC và ANC đều = 1/4 diện tích hình bình hành = 15 cm2. Mặt khác 2 tam giác này có chung đáy AC => chiều cao hạ từ đỉnh M xuống đáy AC = chiều cao từ đỉnh N đáy AC.

Xét tam giác ENC và EMC chung đáy EC, chiều cao bằng nhau => S_ENC = S_EMC. (1)

Xét tam giác EDN và ENC chung đỉnh E, đáy DN = NC => S_EDN = S_ENC (2)

Xét S tam giác AMD = S_AMC (phần a đã chứng minh) có chung AME => S_AED = S_EMC (3)

Từ (1) ; (2) và (3) => S_EMC = S_ENC = S_EDN = S_AED.

Ta có S_MBC = 15 cm2 => S_ACD = 15 x 2 = 3 (cm2)

Mà S_ACD = S_ENC + S_EDN + S_AED và 3 tam giác này bằng nhau nên :

S_ENC = 30 : 3 = 10 (cm2) mà S_ENC = S_MEC.

Vậy diện tích MEC = 10 cm2.

c) Từ S_MEC = 10 cm2 => S_MEA = 15 - 10 = 5 (cm2)

Xét có chung chiều cao đỉnh M mà S_MEA/S_MCA = 5/15 = 1/3 =>đáy AE = 1/3 AC

(với cách chứng minh tương tự ta có S_NGC = 5 cm2 và GC = 1/3 AC)

Vậy EG = AC - 1/3 AC - 1/3 AC = 1/3AC

Vậy AE = EG = GC

14 tháng 6 2021
AN và ở đâu
11 tháng 6 2021

Nối AN và EN

Xét các tam giác AMC và ANC đều = \(\frac{1}{4}\) diện tích hình bình hành = 15 cm2. Mặt khác 2 tam giác này có chung đáy AC \(\Rightarrow\)chiều cao hạ từ đỉnh M xuống đáy AC = chiều cao từ đỉnh N đáy AC.

Xét tam giác ENC và EMC chung đáy EC, chiều cao bằng nhau \(\Rightarrow\)\(S_{ENC}=S_{EMC}\left(1\right)\)

Xét tam giác EDN và ENC chung đỉnh E, đáy DN = NC \(\Rightarrow\)\(S_{EDN}=S_{ENC}\left(2\right)\)

Xét \(S_{AMD}\)\(S_{AMC}\)  có chung AME \(\Rightarrow\)\(S_{AED}=S_{EMC}\left(3\right)\)

Từ (1) ; (2) và (3) \(\Rightarrow\) \(S_{EMC}=S_{ENC}=S_{EDN}=S_{AED}\)

Ta có \(S_{MBC}=\) 15 cm2 \(\Rightarrow\) \(S_{ACD}\)= 15 x 2 = 30 (cm2)

\(S_{ACD}\) \(=S_{ENC}+S_{EDN}+S_{AED}\) và 3 tam giác này bằng nhau nên :

\(S_{ENC}\) = 30 : 3 = 10 (cm2) mà \(S_{ENC}\)\(S_{MEC}\)

Vậy diện tích MEC = 10 cm2.

11 tháng 6 2021

\(S_{AMD}=\frac{1}{2}S_{MDC}\)vì đáy \(AM=\frac{1}{2}DC\)và chiều cao kẻ từ  \(D\)đến \(AM\)bằng chiều cao kẻ từ \(M\)đến \(DC\)vì cả hai chiều cao đều là chiều cao của hình thang

\(S_{AMD}=\frac{1}{2}S_{MDC}\)mà chung đáy \(MD\)nên chiều cao \(AH=\frac{1}{2}\)chiều cao \(CK\)

Ta có: Chiều cao \(AH\)cũng chính là chiều cao \(\Delta AME\)và chiều cao \(CK\)cũng chính là chiều cao của \(\Delta MEC\)

\(S_{AME}=\frac{1}{2}S_{MEC}\)vì chung đáy \(ME\)và chiều cao \(AH=\frac{1}{2}CK\)

\(\Rightarrow\)Coi \(S_{AME}\)là một phần, \(S_{MEC}\)là hai phần, \(S_{MAC}\)là 3 phần

Ta có: \(S_{MAC}=S_{MBC}\)vì đáy \(MA=MB\)và chung chiều cao kẻ từ \(C\)đến \(AB\)

\(S_{MEC}=15:\left(1+2\right).2=10\left(cm^2\right)\)

Vậy \(S_{MEC}=10cm^2\)

1,Cho hình thang vuông ABCD vuông góc tại A và D,đáy lớn CD gấp 3 lần đáy nhỏ AB. Kéo dài DA và CB cắt nhau tại M.a,So sánh diện tích hai tam giác ABC và ADCb,So sánh diện tích hai tam giác ABM và ACMc,Biết diện thích hình thang ABCD bằng 64 cm2. Tính diện tích tam giác MBA. 2,Trên hình vẽ ABCD là hình thang.a,Hãy tìm các hình tam giác có diện tích bằng nhaub,Diện tích hình thang 16m2 và hiệu hai đáy của nó bằng...
Đọc tiếp

1,Cho hình thang vuông ABCD vuông góc tại A và D,đáy lớn CD gấp 3 lần đáy nhỏ AB. Kéo dài DA và CB cắt nhau tại M.
a,So sánh diện tích hai tam giác ABC và ADC
b,So sánh diện tích hai tam giác ABM và ACM
c,Biết diện thích hình thang ABCD bằng 64 cm2. Tính diện tích tam giác MBA. 
2,Trên hình vẽ ABCD là hình thang.
a,Hãy tìm các hình tam giác có diện tích bằng nhau
b,Diện tích hình thang 16m2 và hiệu hai đáy của nó bằng 4m. Tính độ dài mỗi đáy hình thang. Biết rằng khi giảm đáy lớn 1m thì diện tích hình thang giảm 1m2.
3,Cho tam giác ABC. P là trung điểm của cạnh BC; nối AP,trên AP lấy điểm M,N sao cho AM = MN = NP. Biết diện tích tam giác NPC = 60 cm2
a,Tính diện tích các tam giác AMC,MNC,ABP
b,Kéo dài BN cắt AC ở Q. Chứng tỏ rằng Q là trung điểm của cạnh AC.
4,Cho tam giác ABC có MC = 1/4 BC,BK là đường cao của tam giác ABC,MH là đường cao của tam giác AMC có AC là đáy chung. So sánh độ dài BK và MH?

5
13 tháng 12 2016

Ko biết, chắt bàng 1.3,2.3,3.5,4.17

11 tháng 1 2017

KO BIET LAM