K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2015

x+y=a+b => (x+y)​​2 ​ = (a+b)​2 <=> x2+y2​+2xy=a​2+b2​+2ab mà x2​+y2=a2+b2 nên ta suy ra xy=ab​

​ta có x3+y3 = (x+y)(x​2​-xy+y2​) thay các dữ kiện đã có ta được x​3+y3​=(a+b)(a2-ab+b​2)=a​3+b3​ điều phải chứng minh

8 tháng 8 2021

Ta có x + y = a + b 

=> (x + y)2 = (a + b)2 

=> x2 + y2 + 2xy = a2 + b2 + 2ab 

=> xy = ab

Lại có x + y = a + b

=> (x  + y)3 = (a + b)3 

=> x3 + 3x2y + 3xy2 + y3 = a3 + 3a2b + 3ab2 + b3 

=> x3 + y3 + 3xy(x + y) = a3 + b3 + 3ab(a + b)

=> x3 + y3 = a3 + b3 (vì x + y = a + b ; xy = ab)

NM
8 tháng 8 2021

\(x+y=a+b\Leftrightarrow x^2+2xy+y^2=a^2+2ab+b^2\left(1\right)\)

\(x^3+y^3=a^3+b^3\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)=\left(a+b\right)^3-3ab\left(a+b\right)\)

mà do a+b=x+y nên \(ab=xy\) thay vào (1) ta có

\(x^2+y^2=a^2+b^2\)

28 tháng 9 2023

Ta có: 

\(a^3+2c=3ab\)

\(\Rightarrow\left(x+y\right)^3+2\left(x^3+y^3\right)=3\cdot\left(x+y\right)\left(x^2+y^2\right)\)

\(\Rightarrow\left(x^3+3x^2y+3xy^2+y^3\right)+2x^3+2y^3=3\left(x^3+xy^2+x^2y+y^3\right)\)

\(\Rightarrow x^3+3x^2y+3xy^2+y^3+2x^3+2y^3=3x^3+3xy^2+3xy^2+3y^3\)

\(\Rightarrow3x^3+3x^2y+3xy^2+3y^3=3x^3+3x^2y+3xy^2+3y^3\)

\(\Rightarrow\left(3x^3-3x^3\right)+\left(3x^2y-3x^2y\right)+\left(3xy^2-3xy^2\right)+\left(3y^3-3y^3\right)=0\)

\(\Rightarrow0=0\left(dpcm\right)\)

\(\Rightarrow0=0\left(\text{luôn đúng}\right)\)

Vậy, \(a^3+2c=3ab\)

17 tháng 7 2021

VP `=(a+b)(a^2-ab+b^2)`

`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`

`=a^3+b^3`

.

VP `=(a-b)(a^2+ab+b^2)`

`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`

`=a^3-b^3`

17 tháng 7 2021

đúng rồi mà

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

 Câu 29. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 32. Tìm giá trị lớn nhất của biểu thức: Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.Câu 36. Xét xem các số a và b có thể là số vô tỉ không...
Đọc tiếp

 

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 32. Tìm giá trị lớn nhất của biểu thức: 

Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 38. Cho a, b, c, d > 0. Chứng minh:

Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

Câu 41. Tìm các giá trị của x để các biểu thức sau có nghĩa:

                             Mn giúp em với ;-;

0
22 tháng 11 2020

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

26 tháng 8 2019

a A 3 2 4 1 c b B 3 2 4 1

a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh

\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu 

Do đó \(\widehat{A_1}=\widehat{B_3}\)

Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù

=> \(\widehat{A_4}=180^0-\widehat{A_1}\)                                  \((1)\)

Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù

=> \(\widehat{B_2}=180^0-\widehat{B_3}\)                                 \((2)\)

\(\widehat{A_1}=\widehat{B_3}\)                                                      \((3)\)

Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)

b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) theo câu a

Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh

\(\widehat{A_1}=\widehat{B_3}\) câu a

Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)

c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù

\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài

Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)

Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù

\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)

26 tháng 8 2019

mik chịu thui xin lỗi bạn

2 tháng 4 2018

Thực hiện phép nhân đa thức với đa thức ở vế trái. 

=> VT = VP (đpcm)