K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

$BH, CK$ cùng vuông góc với $AN$ thì nó song song nhau. Như vậy thì $BH, CK$ làm sao giao nhau tại $O$ được?

Em xin lỗi, em chép sai đề bài. Còn đúng ra là \(BH\perp AM\), em có sửa lại đề bài rồi ạ!

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

=>ΔAIB=ΔAIC

b: ΔABC cân tại A

mà AI là trung tuyến

nên AI vuông góc CB

c: Xét ΔABM và ΔACN co

AB=AC

góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN

HB=KC

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

a: XétΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

20 tháng 4 2017

sao vẽ dc hình z Thành Đạt

3 tháng 3 2021

Violympic toán 7

28 tháng 3 2021

â mây zing gút chọp

30 tháng 1 2022

a) \(\Delta ABC\) cân tại A (gt).

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).

Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)

Xét \(\Delta ABM\) và \(\Delta ACN:\)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)

\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)

b) Xét \(\Delta ABH\) và \(\Delta ACK:\)

\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)

\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).

\(\Rightarrow\) AH = AK (2 cạnh tương ứng).

c) Xét \(\Delta AOH\) và \(\Delta AOK:\)

\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)

\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).

\(\Rightarrow\) OH = OK (2 cạnh tương ứng).

Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)

\(\Rightarrow\) OB = OC.

\(\Rightarrow\Delta OBC\) cân tại O.

14 tháng 12 2018

Xét ΔBHM vuông tại H và ΔCKN vuông tại K có:

      BM = CN (gt)

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBHM = ΔCKN (cạnh huyền – góc nhọn)

⇒ BH = CK (hai cạnh tương ứng)

23 tháng 3 2018

Hình như bài này là bai 71,72 gì đó ở SGK 7ở gần cuối trang thì phải