cho tu giac ABCD co goc A+D=B+D chung minh rang ABCD la hinh thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao hai đường chéo là K
\(\widehat{ACD}=\widehat{BDC}\)nên tam giác KDC cân tại K.Suy ra KD = KC
Tương tự có AB // CD nên ta có các cặp góc so le trong như sau : \(\orbr{\begin{cases}\widehat{KCD}=\widehat{KAB}\\\widehat{KDB}=\widehat{KBA}\end{cases}\Rightarrow}\Delta KAB\)cân tại K có KA = KB
Vì KD = KC và KA = KB nên \(KA+KC=KD+KB\Leftrightarrow BD=AC\),Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân
Hướng giải:
a) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF)
b) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF) - câu a
kq: hình bình hành (dấu hiệu: tứ giác có 2 cạnh đối song song và bằng nhau)
c) cm BFKC là hình chữ nhật
(bằng cách: - cm BFKC là hình bình hành theo dấu hiệu tứ giác có 2 cặp cạnh đối song song
- cm BFKC là hình chữ nhật theo dấu hiệu hình bình hành có 1 go1cv vuông là hình chữ nhật)
Áp dụng tính chất hình chữ nhật có 2 đường chéo bằng nhau và CẮT NHAU TẠI TRUNG ĐIỂM MỖI ĐƯỜNG)
d) EI // OC (do OEIC là hình bình hành - cmt ở câu b)
Có chung điểm I => HI // EI (// OC) hay HK // EI
a: Xét tứ giác ABEF có
BE//AF
BE=AF
Do đó: ABEF là hình bình hành
mà BE=BA
nên ABEF là hình thoi
=>BF\(\perp\)AE
b: Xét ΔABF có AB=AF
nên ΔABF cân tại A
mà \(\widehat{BAF}=60^0\)
nên ΔABF đều
=>\(\widehat{AFB}=60^0\)
=>\(\widehat{BFD}=120^0=\widehat{D}\)
hay BFDC là hình thang cân
c: Xét ΔABD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔABF vuông tại B
=>BD\(\perp\)AM
Xét tứ giác BMCD có
BM//CD
BM=CD
DO đó: BMCD là hình bình hành
mà \(\widehat{MBD}=90^0\)
nên BMCD là hình chữ nhật