K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

a\ -2.[n-1]+5 chia het chon n-1

vi -2.[n-1] chia het cho n-1 nen 5 chia het cho n-1

vay n-1 thuoc uoc cua 5 thuoc -1;1;-5;5

thay n-1 vao tung uoc  cua 5

b\vi 3n+2 chia het cho 2n-3 nen 2[3n+2] cung chia het cho 2n-3

=6n+4 chia het cho 2n-3

3.[2n-3]+13 chia het cho 2n-3

vi 3[2n-3] chia het cho 2n-3 nen 13 cung chia het cho 2n -3

thay 2n-3 vao tung uoc cua 13 de tim ra n

oke

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

15 tháng 12 2016

làm câu

a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)

\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;1;5;-2\right\}\)

d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{1;0;3;-2\right\}\)

29 tháng 7 2019

#)Giải :

1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)

\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn

29 tháng 7 2019

a) Ta có: n + 7 = (n + 3) + 4

Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}

Lập bảng :

n + 3 1 -1 2 -2 4 -4
  n -2 -4 -1 -5 1 -7

Vậy ...

b) Ta có: 2n + 5 = 2(n + 3) - 1

Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(1) = {1; -1}

Với: n + 3 = 1 => n = 1 - 3 = -2

n + 3 = -1 => n= -1 - 3 = -4

Vậy ...

14 tháng 11 2015

a)2n-1 chia hết cho n-2

2n-4+3 chia hết cho n-2

2(n-2)+3 chia hết cho n-2

3 chia hết cho n-2 hay n-2 EƯ(3)={1;3;-1;-3}

=>nE{3;5;1;-1}

b)n2-n+2 chia hết cho n-1

n(n-1)+2 chia hết cho n-1

=>2 chia hết cho n-1 hay n-1EƯ(2)={1;2;-1;-2}

=>nE{2;3;0;-1}

C)tương tự

23 tháng 1 2016

a=2;0;6;-4

b= chịu

27 tháng 10 2021

a. n + 4 \(⋮\) n

\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)

\(⋮\) n 

\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}

\(\Rightarrow\) n \(\in\) {1; 2; 4}

27 tháng 10 2021

b. 3n + 11 \(⋮\) n + 2

3n + 6 + 5 \(⋮\) n + 2

3(n + 2) + 5 \(⋮\) n + 2

\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{​​}⋮n+2\\5⋮n+2\end{matrix}\right.\)

\(\Rightarrow\) 5 \(⋮\) n + 2

\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}

n + 215
nvô lí3

\(\Rightarrow\) n = 3

13 tháng 11 2017

2n + n +7n +1 2n -1 n +n +4 2n -n 2n + 7n +1 2n -n 8n +1 8n -1 2 3 2 3 2 2 2 2 để 2n3+n2 +7n+1 chia hết cho 2n-1 thì 2 \(⋮2n-1\)

=>2n-1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

ta có bảng sau

2n-1 -1 1 -2 2
n 0 1 \(\dfrac{-1}{2}\) 1,5
tm tm loại loại

vậy n \(\in\left\{0;1\right\}\)

19 tháng 8 2020

Em xinh ko

AH
Akai Haruma
Giáo viên
2 tháng 1

1/

$10n+4\vdots 2n+7$

$\Rightarrow 5(2n+7)-31\vdots 2n+7$

$\Rightarrow 31\vdots 2n+7$

$\Rightarrow 2n+7\in Ư(31)$

$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$

$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$

AH
Akai Haruma
Giáo viên
2 tháng 1

2/

$5n-4\vdots 3n+1$

$\Rightarrow 3(5n-4)\vdots 3n+1$

$\Rightarroq 15n-12\vdots 3n+1$

$\Rightarrow 5(3n+1)-17\vdots 3n+1$

$\Rightarrow 17\vdots 3n+1$

$\Rightarrow 3n+1\in Ư(17)$

$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$

$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$

Do $n$ nguyên nên $n\in\left\{0; -6\right\}$