Chứng minh rằng n1001-n chia hết cho 3 với n E Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
\(3^{n+1}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)
A=n.(5n+3) chia hết cho 2
Nếu n là chẵn thì n = 2k
Thay vào ta có:
A = 2k(5.2k + 3) = 2k.(10k + 3)
= 20.k2 + 6.k
= 2.(10k2 + 3k) chia hết cho 2
= n(n-1)(n+1) +4
tích của số hạng đầu luôn chia hết cho 3 còn 4 không chia hết cho 3
=> (n-1)n(n+1) + 4 k chia hết cho 3
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
Bài làm :
\(a\text{)}\left(n^3-n\right)=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì tích ba số tự nhiên liên tiếp ⋮ 6 nên : n3 - n ⋮ 6
=> Điều phải chứng minh
\(b\text{)}n^5-m=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì :
- n(n-1)(n+1)(n-2)(n+2) là tích 5 số liên tiếp nên n(n-1)(n+1)(n-2)(n+2) ⋮ 5
- 5n(n-1)(n+1) ⋮ 5
=> (n5-n) ⋮5
=> Điều phải chứng minh
\(\text{c)}n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\text{[}n^2\left(n^2-1\right)-4\left(n^2-1\right)\text{]}=n\left(n^2-1\right)\left(n^2-4\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\text{Vì : }n-2;n-1;n;n+1;n+2\text{là tích của 5 số nguyên liên tiếp nên chia hết cho 3,5,8}\)
Mà 3,5,8 nguyên tố cùng nhau nên :
\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮3.5.8=120\) \(\)
=> Điều phải chứng minh
a) n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 )
Ta có n( n - 1 ) là hai số tự nhiên liên tiếp => chia hết cho 2 (1)
n( n - 1 )( n + 1 ) là ba số tự nhiên liên tiếp => chia hết cho 3 (2)
Từ (1) và (2) => n( n - 1 )( n + 1 ) chia hết cho 6 hay n3 - n chia hết cho 6 ( đpcm )
b) n5 - n = n( n4 - 1 ) = n( n2 - 1 )( n2 + 1 ) = n( n - 1 )( n + 1 )( n2 + 1 )
= n( n - 1 )( n + 1 )[ ( n2 - 4 ) + 5 ]
= n( n - 1 )( n + 1 )( n2 - 4 ) + 5n( n - 1 )( n + 1 )
= n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) + 5n( n - 1 )( n + 1 )
n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (1)
5n( n - 1 )( n + 1 ) chia hết cho 5 (2)
Từ (1) và (2) => đpcm
c) n5 - 5n3 + 4n = n( n4 - 5n2 + 4 )
Xét n4 - 5n2 + 4 (*)
Đặt t = n2
(*) <=> t2 - 5t + 4 = t2 - t - 4t + 4 = t( t - 1 ) - 4( t - 1 ) = ( t - 1 )( t - 4 ) = ( n2 - 1 )( n2 - 4 )
=> n( n4 - 5n2 + 4 ) = n( n2 - 1 )( n2 - 4 ) = n( n - 1 )( n + 1 )( n - 2 )( n + 2 )
n( n - 1 ) là tích của hai số nguyên liên tiếp => chia hết cho 2 (1)
n( n - 1 )( n + 1 ) là tích của 3 số nguyên liên tiếp => chia hết cho 3 (2)
n( n - 1 )( n + 1 )( n - 2 ) là tích của 4 số nguyên liên tiếp => chia hết cho 4 (3)
n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (4)
Từ (1), (2), (3) và (4) => đpcm