K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

9 tháng 2 2018

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

9 tháng 2 2018

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

\(3^{n+1}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

1 tháng 9 2016

A=n.(5n+3) chia hết cho 2

Nếu n là chẵn thì n = 2k

Thay vào ta có: 

A = 2k(5.2k + 3) = 2k.(10k + 3)

                         = 20.k2 + 6.k

                         = 2.(10k2 + 3k) chia hết cho 2

1 tháng 10 2016

= n(n-1)(n+1) +4

tích của số hạng đầu luôn chia hết cho 3 còn 4 không chia hết cho 3

=> (n-1)n(n+1) + 4 k chia hết cho 3

6 tháng 8 2017

a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)

\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z

b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)

\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z

24 tháng 9 2020

               Bài làm :

\(a\text{)}\left(n^3-n\right)=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)=\left(n-1\right)n\left(n+1\right)\)

Vì tích ba số tự nhiên liên tiếp ⋮ 6 nên : n3 - n ⋮ 6

=> Điều phải chứng minh

\(b\text{)}n^5-m=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Vì :

  • n(n-1)(n+1)(n-2)(n+2) là tích 5 số liên tiếp nên n(n-1)(n+1)(n-2)(n+2) ⋮ 5
  • 5n(n-1)(n+1) ⋮ 5

=> (n5-n) ⋮5

=> Điều phải chứng minh

 \(\text{c)}n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\text{[}n^2\left(n^2-1\right)-4\left(n^2-1\right)\text{]}=n\left(n^2-1\right)\left(n^2-4\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\text{Vì : }n-2;n-1;n;n+1;n+2\text{là tích của 5 số nguyên liên tiếp nên chia hết cho 3,5,8}\)

Mà 3,5,8 nguyên tố cùng nhau nên :

\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮3.5.8=120\) \(\)

=> Điều phải chứng minh

24 tháng 9 2020

a) n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 )

Ta có n( n - 1 ) là hai số tự nhiên liên tiếp => chia hết cho 2 (1)

n( n - 1 )( n + 1 ) là ba số tự nhiên liên tiếp => chia hết cho 3 (2)

Từ (1) và (2) => n( n - 1 )( n + 1 ) chia hết cho 6 hay n3 - n chia hết cho 6 ( đpcm ) 

b) n5 - n = n( n4 - 1 ) = n( n2 - 1 )( n2 + 1 ) = n( n - 1 )( n + 1 )( n2 + 1 )

= n( n - 1 )( n + 1 )[ ( n2 - 4 ) + 5 ]

= n( n - 1 )( n + 1 )( n2 - 4 ) + 5n( n - 1 )( n + 1 )

= n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) + 5n( n - 1 )( n + 1 )

n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (1)

5n( n - 1 )( n + 1 ) chia hết cho 5 (2)

Từ (1) và (2) => đpcm

c) n5 - 5n3 + 4n = n( n4 - 5n2 + 4 )

Xét n4 - 5n2 + 4 (*)

Đặt t = n2 

(*) <=> t2 - 5t + 4 = t2 - t - 4t + 4 = t( t - 1 ) - 4( t - 1 ) = ( t - 1 )( t - 4 ) = ( n2 - 1 )( n2 - 4 )

=> n( n4 - 5n2 + 4 ) = n( n2 - 1 )( n2 - 4 ) = n( n - 1 )( n + 1 )( n - 2 )( n + 2 )

n( n - 1 ) là tích của hai số nguyên liên tiếp => chia hết cho 2 (1)

n( n - 1 )( n + 1 ) là tích của 3 số nguyên liên tiếp => chia hết cho 3 (2)

n( n - 1 )( n + 1 )( n - 2 ) là tích của 4 số nguyên liên tiếp => chia hết cho 4 (3)

n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (4)

Từ (1), (2), (3) và (4) => đpcm