K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

(Bạn tự vẽ hình giùm)

Ta có \(\widehat{KAB}=\widehat{AKD}\)(AB // CD; so le trong)

Mà \(\widehat{KAB}=\widehat{DAK}\)(AK là tia phân giác của \(\widehat{A}\))

=> \(\widehat{AKD}=\widehat{DAK}\)

=> \(\Delta ADK\)cân tại D

nên AD = DK (1)

Chứng minh tương tự, ta cũng có: \(\Delta BKC\)cân tại C

nên BC = KC (2)

Lấy (1) cộng (2)

=> AD + BC = DK + KC

Mà \(K\in CD\)(gt)

=> D, K, C thẳng hàng

=> AD + BC = DC (đpcm)

Ta có: \(\widehat{KAB}=\widehat{KAD}\)(AK là phân giác của góc BAD)

\(\widehat{BAK}=\widehat{DKA}\)(hai góc so le trong, AB//DK)

Do đó: \(\widehat{DAK}=\widehat{DKA}\)

=>DA=DK

Ta có: \(\widehat{ABK}=\widehat{CBK}\)(BK là phân giác của góc ABC)

\(\widehat{ABK}=\widehat{CKB}\)(hai góc so le trong, AB//CK)

Do đó: \(\widehat{CBK}=\widehat{CKB}\)

=>CK=CB

Ta có: AD+CB

=DK+KC

=DC

30 tháng 8 2019

Câu hỏi của Hồ Phong Thư - Toán lớp 8 - Học toán với OnlineMath

22 tháng 6 2019

Em tham khảo câu 1 tại link dưới:

Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath

12 tháng 9 2021

Vì \(AB//CD\left(h.thang.ABCD\right)\) nên \(\widehat{A_2}=\widehat{K_1};\widehat{B_2}=\widehat{K_2}\)

Mà \(\widehat{A_1}=\widehat{A_2};\widehat{B_1}=\widehat{B_2}\left(t/c.tia.phân.giác\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{K_1};\widehat{B_1}=\widehat{K_2}\\ \Rightarrow\Delta ADK,\Delta BKC.lần.lượt.cân.tại.D,C\\ \Rightarrow AD=DK;BC=KC\\ \Rightarrow AD+BC=KC+KD=CD\)

 

12 tháng 9 2021

thanks

9 tháng 7 2016

Ta có: AB//CD(gt)=) góc AED= GÓC EDC(SLT)

                         MÀ GÓC EDC = GÓC ADE(GT) 

                         =) TG AED CÂN TẠI A  

                         =)AE=AD (1) 

TA LẠI CÓ BE=BC (CHỨNG MINH TƯƠNG TỰ) (2) 

TỪ (1) VÀ (2) =) AB=AE+EB=AD+BC(ĐPCM)

NHỚ TKS VÀ K ĐÚNG NHÁ

7 tháng 10 2021

SLT là j v