Hãy chứng minh định lí Pom-piu : Ở miền trong 1 tam giác đều, cứ lấy 1 điểm bất kì thì khoảng cách từ điểm đó đến 3 đỉnh của tam giác thỏa mãn độ dài 3 cạnh của 1 tam giác ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC
Kẻ đường cao AH const
Đặt \(AB=AC=BC=a\)
\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\)
\(=\frac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\)
\(=\frac{1}{2}a\left(DM+ME+MF\right)\)
\(=\frac{1}{2}a.AH\)
\(=DM+ME+MF=AH\left(đpcm\right)\)
Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC
Kẻ đường cao \(AH\) const
Đặt \(AB=AC=BC=a\)
\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\\ =\dfrac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\\ =\dfrac{1}{2}a\left(DM+ME+MF\right)\\ =\dfrac{1}{2}a.AH\\ \Rightarrow DM+ME+MF=AH\\ \RightarrowĐpcm\)
|
|
Cho M nằm trong tam giác đều ABC chứng minh 1 trong 3 đoạn thẳng MA ,MB ,MC nhỏ hơn tổng 2 đoạn thẳng còn lại
+ Giả sử ∆ABC vuông tại A.
d1 là đường trung trực cạnh AB, d2 là đường trung trực cạnh AC.
d1 cắt d2 tại M. Khi đó M là điểm cách đều ba đỉnh của tam giác ABC.
+ Áp dụng kết quả bài 55 ta có B, M, C thẳng hàng.
QUẢNG CÁO+ M cách đều A, B, C ⇒ MB = MC ⇒ M là trung điểm của cạnh BC (đpcm)
+ M là trung điểm của cạnh BC (đpcm)
*) Giả sử AM là trung tuyến của tam giác ABC suy ra M là trung điểm của cạnh BC
⇒ MB = MC = BC/2
Mà MA = MB = MC (cmt)
⇒ MA = BC/2
Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.