B=\(\frac{1}{7}\cdot3\frac{1}{11}-\frac{1}{7}\cdot\frac{9}{11}-\frac{1}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, \(\frac{7}{12}+\frac{5}{6}+\frac{1}{4}-\frac{3}{7}-\frac{5}{12}\)
\(=\left(\frac{7}{12}-\frac{5}{12}+\frac{5}{6}+\frac{1}{4}\right)-\frac{3}{7}=\left(\frac{7}{12}-\frac{5}{12}+\frac{10}{12}+\frac{3}{12}\right)-\frac{3}{7}=\frac{5}{4}-\frac{3}{7}=\frac{23}{28}\)
b, \(\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\frac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}=\frac{3^{29}\left(11-3\right)}{3^{28}\cdot4}=\frac{3\cdot8}{4}=6\)
#)Giải :
a)\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
a) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{24.25}\)
= \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{24}-\frac{1}{25}\)
= \(\frac{1}{5}-\frac{1}{25}\)
= \(\frac{4}{25}\)
b) \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
= \(1-\frac{1}{101}\)
= \(\frac{100}{101}\)
c) \(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)
= \(5\frac{2}{7}.\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)
= \(5\frac{2}{7}\)
= \(\frac{37}{7}\)
a,\(\frac{3}{7}.\frac{4}{9}+\frac{3}{7}.\frac{5}{9}+\frac{5}{14}\)
\(=\frac{3}{7}.\left(\frac{4}{9}+\frac{5}{9}\right)+\frac{5}{14}\)
\(=\frac{3}{7}.1+\frac{5}{14}\)
\(=\frac{3}{7}+\frac{5}{14}=\frac{6}{14}+\frac{5}{14}=\frac{11}{14}\)
b,\(\frac{-11}{23}.\frac{6}{7}+\frac{8}{9}.\frac{-11}{23}-\frac{1}{23}\)
\(=\)\(\frac{-11}{23}.\left(\frac{6}{7}+\frac{8}{9}\right)-\frac{1}{23}\)
\(=\frac{-11}{23}.\frac{110}{63}-\frac{1}{23}\)
=\(\frac{-1210}{1449}\)-\(\frac{1}{23}\)
\(=\frac{-1273}{1449}\)
G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)
=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)
=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)
=> G = \(\frac{2.50}{1.51}\)
=> G = \(\frac{100}{51}\)
a ) \(\left(-\frac{40}{51}.0,32.\frac{17}{20}\right):\frac{64}{75}\)
\(=\left(-\frac{40}{51}.\frac{8}{25}.\frac{17}{20}\right):\frac{64}{75}\)
\(=\left(\frac{-40.8.17}{51.25.20}\right):\frac{64}{75}\)
\(=\left(\frac{-16}{75}\right).\frac{75}{64}\)
\(=\frac{-1}{1}.\frac{1}{4}=-\frac{1}{4}\)
Phần 1)Đầu tiên bạn nhân B với 1 phần 4 rồi tính đến đoạn gần cuối sẽ ra 1/3 - 1/35 rồi quy đòng rồi tính sẽ ra kêt quả cuối là 32/105 nha
Mình lười lắm nên chỉ help 1 phần thui nha sr
\(B=\frac{1}{7}x\left(\frac{34}{11}-\frac{9}{11}-1\right)\)
B = \(\frac{1}{7}x\left(\frac{34-9-11}{11}\right)\)
B = \(\frac{1}{7}x\frac{14}{11}\)
B = \(\frac{2}{11}\)