K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

\(-2x+4=-2-2x=\frac{8+3y}{14}\)

Xét \(-2x+4=-2-2x\)

\(\Rightarrow4=-2\)(điều này là ko thể xảy ra)

Vậy ko có x nên cũng sẽ ko có y

Đề lỗi ko men ?

\(-2x+4=-2-2x=\frac{8+3y}{14}\)

Xét : \(-2x+4=-2-2x\Leftrightarrow4\ne-2\)

Xét : \(-2x+4=\frac{8+3y}{14}\Leftrightarrow-28x+56=8+3y\Leftrightarrow-28x+48=3y\)( đến đây p/s e ko lm đc :v )

Chắc ko tìm đc x;y .... 

Giải:

a) \(\left(x-4\right).\left(y+1\right)=8\) 

\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng giá trị:

x-4-8-4-2-11248
y+1-1-2-4-88421
x-402356812
y-2-3-5-97310

\(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)

Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\) 

b) \(\left(2x+3\right).\left(y-2\right)=15\) 

\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\) 

2x+3-15-5-3-113515
y-2-1-3-5-1515531
x-9-4-3-2-1016
y1-1-3-1317753

Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\) 

Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\) 

c) \(xy+2x+y=12\) 

\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\) 

\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\) 

\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\) 

x+112714
y+214721
x01613
y1250-1

Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\) 

Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\) 

d) \(xy-x-3y=4\) 

\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\) 

\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\) 

\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\) 

Ta có bảng giá trị:

x-317
y-171
x410
y82

Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)

9 tháng 7 2019

Không chắc đâu:v

a) Ta luôn có \(\left(x-1\right)^2+\left(2x-y-3\right)^2+\left(y+z\right)^2\ge0\forall x,y,z\)

Để đẳng thức xảy ra tức là \(\left(x-1\right)^2+\left(2x-y-3\right)^2+\left(y+z\right)^2=0\) (theo đề bài)

Thì \(\left\{{}\begin{matrix}x=1\\y=2x-3=2.1-3=-1\\z=-y=1\end{matrix}\right.\)

Vậy...

b) Ta luôn có \(VT\ge0\) với mọi x, y. Mà theo đề bài \(VT\le0\)

Do vậy \(VT=0\Leftrightarrow\left(2x+3\right)^{1998}+\left(3y-5\right)^{2000}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{3}{2}\\y=\frac{5}{3}\end{matrix}\right.\)

Bài này của lớp 10 ?? Hơi lạ....

9 tháng 3 2020

a ) \(2x-\left(-17\right)=15\)

\(\Leftrightarrow2x+17=15\)

\(\Leftrightarrow2x=15-17\)

\(\Leftrightarrow2x=-2\)

\(\Leftrightarrow x=-2\div2\)

\(\Leftrightarrow x=-1\)

b ) \(-2x-8=72\)

\(\Leftrightarrow-2x=72+8\)

\(\Leftrightarrow-2x=80\)

\(\Leftrightarrow x=-40\)

9 tháng 3 2020

a) 2x - ( -17 ) = 15

->  2x + 17 = 15

2x = 15 - 17

2x = -2

x = \(\frac{-2}{2}\)

x = -1

b) -2x - 8 = 72

-2x = 72 + 8

-2x = 80

x = 80 : ( -2 )

x = -40

c) 3 . \([x-1]\)= 27

x - 1 = \(\frac{27}{3}\)

x - 1 = 9

x = 9 + 1

x = 10

d) \([-2x+5]\)+ 8 = 21

-2x + 5 = 21 - 8

-2x + 5 = 13

-2x = 13 - 5

-2x = 8

x = \(\frac{8}{-2}\)

x = - 4

11 tháng 7 2023

\(\dfrac{2x}{3y}=-\dfrac{1}{3}\\ \Rightarrow3y=2x:-\dfrac{1}{3}=\dfrac{2x.3}{-1}=-6x\\ \Rightarrow y=-\dfrac{6x}{3}=-2x\)

Thế \(y=-2x\) vào \(2x+3y^2=\dfrac{161}{4}\) được:

\(2x+3.\left(-2x\right)^2=\dfrac{161}{4}\\ \Leftrightarrow2x+12x^2-\dfrac{161}{4}=0\\ \Leftrightarrow48x^2+8x-161=0\\ \Leftrightarrow\left(48x^2+92x\right)+\left(-84x-161\right)=0\\ \Leftrightarrow4x\left(12x+23\right)-7\left(12x+23\right)=0\\ \Leftrightarrow\left(4x-7\right)\left(12x+23\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{4}\Rightarrow y=-\dfrac{2.7}{4}=-\dfrac{7}{2}\\x=-\dfrac{23}{12}\Rightarrow y=-2.-\dfrac{23}{12}=\dfrac{23}{6}\end{matrix}\right.\)

Vậy phương trình có nghiệm \(\left\{x;y\right\}=\left\{\dfrac{7}{4};-\dfrac{7}{2}\right\}\) hoặc \(\left\{x;y\right\}=\left\{-\dfrac{23}{12};\dfrac{23}{6}\right\}\)

15 tháng 9 2015

1. 2x = 3y-2

2x+2x = 3y

4x = 3y

=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)

 

=> \(\frac{x}{3}=2\Rightarrow x=6\)

=> \(\frac{y}{4}=2\Rightarrow y=8\)

15 tháng 9 2015

hờ hờ vừa làm bài vừa mở olm

6 tháng 7 2015

4x=3y, 5y=3z=>\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có;

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

suy ra:

\(\frac{x}{9}=3\Rightarrow x=27\)

\(\frac{y}{12}=3\Rightarrow y=36\)

\(\frac{z}{20}=3\Rightarrow z=60\)

4x = 3y => \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{9}=\frac{y}{12}\) (1)

5y = 3z => \(\frac{y}{3}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{20}\)  (2)

(1);(2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\) 

=> x = 3.9 = 27; b = 3.12 = 36; c = 3.20 = 60

3x2+2y2=7xy3x2+2y2=7xy

⇔3x2−7xy+2y2=0⇔3x2−7xy+2y2=0

⇔3x2−6xy−xy+2y2=0⇔3x2−6xy−xy+2y2=0

⇔3x(x−2y)−y(x−2y)=0⇔3x(x−2y)−y(x−2y)=0

⇔(3x−y)(x−2y)=0⇔(3x−y)(x−2y)=0

⇔[3x−y=0x−2y=0⇔[3x−y=0x−2y=0 ⇔[3x=yx=2y⇔[3x=yx=2y

+) TH1 : y=3xy=3x

⇔A=3x+y7y−x+6x−9y2x+y⇔A=3x+y7y−x+6x−9y2x+y

=3x+3x7.3x−x+6x−9.3x2x+3x=3x+3x7.3x−x+6x−9.3x2x+3x

=9x20x+−21x5x=9x20x+−21x5x

=−154=−154

+) TH2 : x=2yx=2y

⇔A=3x+y7y−x+6x−9y2x+y⇔A=3x+y7y−x+6x−9y2x+y

=3.2y+y7y−2y+6.2y−9y2.2y+y=3.2y+y7y−2y+6.2y−9y2.2y+y

=7y5y+3y5y=7y5y+3y5y

=2=2

Vậy...

20 tháng 7 2018

Ta có:

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\) và \(3x+7y+5z=30\)

Áp dụng t/c DTSBN ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x+7y+5z}{3.21+7.14+5.10}=\frac{30}{211}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{21}=\frac{30}{211}\Rightarrow x=\frac{630}{211}\\\frac{y}{14}=\frac{30}{211}\Rightarrow y=\frac{420}{211}\\\frac{z}{10}=\frac{30}{211}\Rightarrow z=\frac{300}{211}\end{cases}}\)

Vậy ...

hok tốt!

19 tháng 8 2018

bạn vào link https://alfazi.edu.vn/question/5b78c797e5cde951c7e8307d Tham gia trả lời câu hỏi để nhận được những phần quà hấp dẫn đến từ Alfazi như: xu, balo, áo, giày,... và các dụng cụ học tập khác nhé

Rồi bạn trả lời"được bạn My Love mời"cám ơn bn

20 tháng 7 2018

Ta có: \(\hept{\begin{cases}2x=3y\\5y=7z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{21}=\frac{y}{14}\\\frac{y}{14}=\frac{z}{10}\end{cases}\Rightarrow}\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

....................................................................

b tự làm nốt nhé

chúc bạn học tốt~

20 tháng 7 2018

\(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}\)hay   \(\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}\)hay  \(\frac{y}{14}=\frac{z}{10}\)

suy ra:  \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)hay   \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

       \(\frac{3x}{63}=\frac{7y}{98}=\frac{5x}{50}=\frac{3x+7y-5z}{63+98-50}=\frac{30}{111}=\frac{10}{37}\)

đến đây bn tính tiếp nhé