b1 cho phân thưc
A=1/x+5 +2/x-5 -2x+10/(x+5)(x-5) (x#5,-5)
a)rút gọn
b)cho =-3 tính giá trị của biểu thức 9x2-42x+49
b2 cho phân thức A=3/x+3 +1/x-3 -18/9-x2 (x#3,-3)
a)rút gọn
b) tìm x để A=4
giải hộ minh chi tiết với ạ . cảm ơn mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\pm1;-2\)
\(P=\left(\frac{x+1}{x-1}+\frac{2}{x^2-1}-\frac{x}{x+1}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x^2-x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1+2-x^2+x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\frac{3x+3}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3}{x+2}\)
c. \(x^2-3x=0\Leftrightarrow x.\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Nếu x=0 thì: \(P=\frac{3}{x+2}=\frac{3}{0+2}=\frac{3}{2}\)
Nếu x=3 thì: \(P=\frac{3}{x+2}=\frac{3}{3+2}=\frac{3}{5}\)
d. Ta có: \(P=\frac{3}{x+2}\inℤ\)
Vì \(x\inℤ\Rightarrow x+2\inℤ\Rightarrow x+2\inƯ\left\{3\right\}\Rightarrow x+2\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-3;-1;1;-5\right\}\)
Kết hợp ĐKXĐ \(\Rightarrow x\in\left\{-3;-5\right\}\)
1) PT \(\Leftrightarrow\dfrac{x+3}{15}=\dfrac{4}{15}\) \(\Rightarrow x+3=4\) \(\Rightarrow x=1\)
Vậy ...
2) Mạnh dạn đoán đề là \(\left(2x-5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy ...
3) PT \(\Rightarrow3x-4-2x+5=3\)
\(\Rightarrow x=2\)
Vậy ...
4) PT \(\Rightarrow\left[{}\begin{matrix}2x+1=0\\\dfrac{1}{2}x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy ...
3) Ta có: \(\left(3x-4\right)-\left(2x-5\right)=3\)
\(\Leftrightarrow3x-4-2x+5=3\)
\(\Leftrightarrow x+1=3\)
hay x=2
\(\frac{x^4+x^3+6x^2+5x+5}{x^2+x+1}=\frac{x^4+x^3+x^2+5x^2+5x+5}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)}{\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^2+5\right)}{x^2+x+1}=x^2+5\)
\(\frac{x^4+x^3+2x^2+x+1}{x^2+x+1}=\frac{x^4+x^3+x^2+x^2+x+1}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^2+x+1}=\frac{\left(x^2+x+1\right)\left(x^2+1\right)}{x^2+x+1}=x^2+1\)
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
B1:
a) A = \(\dfrac{1}{x+2}+\dfrac{x^2-x-2}{x^2-7x+10}-\dfrac{2x-4}{x-5}\)
= \(\dfrac{1}{x+2}+\dfrac{\left(x^2-2x\right)+\left(x-2\right)}{\left(x^2-2x\right)-\left(5x-10\right)}-\dfrac{2\left(x-2\right)}{x-5}\)
= \(\dfrac{1}{x+2}+\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{2\left(x-2\right)}{x-5}\) [ĐKXĐ: x ≠ -2; x ≠ 5]
= \(\dfrac{x-5}{\left(x+2\right)\left(x-5\right)}+\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-5\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)\left(x+2\right)}{\left(x-5\right)\left(x+2\right)}\)
= \(\dfrac{-x^2+4x+5}{\left(x+2\right)\left(x-5\right)}\)
= \(\dfrac{-x\left(x-5\right)-\left(x-5\right)}{\left(x+2\right)\left(x-5\right)}\)
= \(\dfrac{\left(x-5\right)\left(-x-1\right)}{\left(x-5\right)\left(x+2\right)}\)
= \(-\dfrac{x+1}{x+2}\)
b) Thay x = 3 vào A, ta có:
A = \(-\dfrac{3+1}{3+2}=-\dfrac{4}{5}\)
c) A = 1
<=> \(-\dfrac{x+1}{x+2}\)= 1 <=> -(x + 1) = x + 2 <=> -x - 1 = x + 2
<=> -2x = 3 <=> x = \(\dfrac{-3}{2}\)
d) A = \(\dfrac{-\left(x+1\right)}{x+2}\)= \(\dfrac{-\left(x+2\right)+1}{x+2}\)= -1 + \(\dfrac{1}{x+2}\)
A đạt giá trị nguyên khi 1 chia hết cho x + 2 hay x + 2 ∈ Ư(1) = {1;-1}
* x + 2 = 1 <=> x = -1
* x + 2 = -1 <=> x = -3
B2: M = \(\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
= \(\dfrac{x\left(x+2\right)}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{5\left(10-x\right)}{2x\left(x+5\right)}\)[ĐKXĐ: x ≠ 0; x ≠ -5
= \(\dfrac{x^2\left(x+2\right)+2\left(x+5\right)\left(x-5\right)+5\left(10-x\right)}{2x\left(x+5\right)}\)
= \(\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
= \(\dfrac{x^2+4x-5}{2\left(x+5\right)}\)
= \(\dfrac{\left(x^2+5x\right)-\left(x+5\right)}{2\left(x+5\right)}\)
\(\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}=\dfrac{x-1}{2}\)
b) Thay x = 3 vào M, ta có:
M = \(\dfrac{3-1}{2}=1\)
Thay x = 5 vào M, ta có:
M = \(\dfrac{5-1}{2}=2\)
Bài 1:
a) ĐKXĐ: \(x\ne\pm5\)
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(=\frac{x-5}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{2x+10}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x-5+\left(2x+10\right)-\left(2x+10\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x-5}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+5}\)
b) \(B=9x^2-42x+49=\left(3x-7\right)^2\)
Tại \(x=-3\)thì: \(B=\left[3.\left(-3\right)-7\right]^2=256\)
Bài 2:
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
\(=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)
b) \(A=4\)\(\Rightarrow\)\(\frac{4}{x-3}=4\)
\(\Rightarrow\)\(4\left(x-3\right)=4\)\(\Leftrightarrow\)\(x-3=1\)\(\Leftrightarrow\)\(x=4\) (t/m ĐKXĐ)
Vậy....