K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

a) ta có 

abcd=120 mà abc=-30 nên -30.d=120 suy ra d=-4

abc=-30 mà ab=-6 nên -6.c=-30 suy ra c=5

bc=-15 mà c=5 suy ra b=-3

ab=-6 mà b=-3 suy ra a.(-3) = -6 suy ra a=2

b) a+b=-1, a+c=6, b+c=1 nên 2a + 2b+2c= -1 + 6 + 1 = 6

suy ra a+b+c = 3 mà a+b= -1 suy ra c=4

suy ra a=6-4=2; b=1-4 = -3

c) a+b+c=-6, b+c+d = -9, c+d+a = -8, d+a+b = -7 nên 3a+3b+3c+3d = -30

suy ra a+b+c+d= -10

mà a+b+c = -6 

suy ra d=-4

nên b+c=5, a+c=-4, a+b = -3 suy ra 2a+2b+2c = -2 suy ra a+b+c=-1

suy ra a=-6, b= 3, c= 2

a, d=-4     c=5     b=-3     a=2

b, c=4     a=2      b=-3

c, d=-4   a=-1     c=-3    b=-2

8 tháng 5 2019

Lời giải:

Ta có: a2b+a+b⋮ab2+b+7

⇒a2b2+ab+b2⋮ab2+b+7

⇔a(ab2+b+7)+b2−7a⋮ab2+b+7

⇔b2−7a⋮ab2+b+7

Ta xét các TH sau:

TH1: b2=7a→b⋮7→b=7t , khi đó a=7t2

Thay vào điều kiện ban đầu ta thấy luôn đúng.

TH2: b2−7a>0⇒b2−7a≥ab2+b+7

Vì a∈Z+⇒a≥1⇒ab2+b+7+7a>b2 (vô lý)

TH3: 7a−b2>0⇒7a−b2≥ab2+b+7

Để thỏa mãn điều kiện trên thì ít nhất b2<7⇔b∈{1;2}

Thay từng giá trị b vào điều kiện ban đầu ta thu được các cặp (a,b) thỏa mãn là: (11,1),(49,1)

23 tháng 4 2018

Tìm các số nguyên dương a, b thỏa mãn :5/a-b/3=1/6

23 tháng 4 2018

quy dong mau len rui tinh theo phuong phap uoc ay cau