tìm các số nguyên dương a,b thỏa mãn ab=120 và (a,b)=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có
abcd=120 mà abc=-30 nên -30.d=120 suy ra d=-4
abc=-30 mà ab=-6 nên -6.c=-30 suy ra c=5
bc=-15 mà c=5 suy ra b=-3
ab=-6 mà b=-3 suy ra a.(-3) = -6 suy ra a=2
b) a+b=-1, a+c=6, b+c=1 nên 2a + 2b+2c= -1 + 6 + 1 = 6
suy ra a+b+c = 3 mà a+b= -1 suy ra c=4
suy ra a=6-4=2; b=1-4 = -3
c) a+b+c=-6, b+c+d = -9, c+d+a = -8, d+a+b = -7 nên 3a+3b+3c+3d = -30
suy ra a+b+c+d= -10
mà a+b+c = -6
suy ra d=-4
nên b+c=5, a+c=-4, a+b = -3 suy ra 2a+2b+2c = -2 suy ra a+b+c=-1
suy ra a=-6, b= 3, c= 2
a, d=-4 c=5 b=-3 a=2
b, c=4 a=2 b=-3
c, d=-4 a=-1 c=-3 b=-2
Lời giải:
Ta có: a2b+a+b⋮ab2+b+7
⇒a2b2+ab+b2⋮ab2+b+7
⇔a(ab2+b+7)+b2−7a⋮ab2+b+7
⇔b2−7a⋮ab2+b+7
Ta xét các TH sau:
TH1: b2=7a→b⋮7→b=7t , khi đó a=7t2
Thay vào điều kiện ban đầu ta thấy luôn đúng.
TH2: b2−7a>0⇒b2−7a≥ab2+b+7
Vì a∈Z+⇒a≥1⇒ab2+b+7+7a>b2 (vô lý)
TH3: 7a−b2>0⇒7a−b2≥ab2+b+7
Để thỏa mãn điều kiện trên thì ít nhất b2<7⇔b∈{1;2}
Thay từng giá trị b vào điều kiện ban đầu ta thu được các cặp (a,b) thỏa mãn là: (11,1),(49,1)