K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

21 tháng 7 2016

a) A = \(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\frac{x^2+3}{\left|x\right|}+\left|x-2\right|=\left|x\right|+\frac{3}{\left|x\right|}+ \left|x-2\right|\)

b) A nhận gt nguyên khi |x| thuộc Ư(3) (các ước dương)

=> |x| thuộc {1;3} => x thuộc {-3;-1;1;3}

20 tháng 7 2016

Mik không biết nhưng bạn click mik nhé .
 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

ĐK: $x\geq 0; x\neq 4; x\neq 9$

a) 

\(P=\frac{2\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{2\sqrt{x}-9+(2\sqrt{x}+1)(\sqrt{x}-2)-(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{x-\sqrt{x}-2}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Với $x$ nguyên, để $P$ nguyên thì $\sqrt{x}-3$ phải là ước nguyên của $4$

Mà $\sqrt{x}-3\geq -3$ nên:

$\Rightarrow \sqrt{x}-3\in\left\{\pm 1;\pm 2;4\right\}$

$\Rightarrow x\in \left\{4;16;1;25;49\right\}$ (đều thỏa mãn.

 

14 tháng 7 2016

a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)

b) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=-\frac{3}{2\left(\sqrt{x}-3\right)}\)c) Để P nguyên thì \(2\left(\sqrt{x}-3\right)\in\left\{-3;-1;1;3\right\}\)=> x thuộc rỗng.

17 tháng 6 2015

\(P=\sqrt{\left(\frac{x^3-3}{x}\right)^2+12}+\sqrt{x^2+4x+4-8x}\)

\(P=\sqrt{\left(x^2-\frac{3}{x}\right)^2+12}+\sqrt{\left(x-2\right)^2}\)

\(P=\sqrt{\left(x^2-\frac{3}{x}\right)^2+12}+\left|x-2\right|\)

x nguyên nên |x - 2| nguyên. Để P nguyên thì \(\left(x^2-\frac{3}{x}\right)^2+12=p^2\) (p  nguyên)

=> \(\left(x^2-\frac{3}{x}\right)^2-p^2=-12\) và p2 > 12; \(x^2-\frac{3}{x}\) nguyên

<=> \(\left(x^2-\frac{3}{x}-p\right)\left(x^2-\frac{3}{x}+p\right)=-12\)

Vì \(\left(x^2-\frac{3}{x}+p\right)-\left(x^2-\frac{3}{x}-p\right)=2p\) chẵn nên \(\left(x^2-\frac{3}{x}-p\right);\left(x^2-\frac{3}{x}+p\right)\) cùng chẵn hoặc cùng lẻ

=> \(\left(x^2-\frac{3}{x}-p\right)=2;\left(x^2-\frac{3}{x}+p\right)=-6\) hoặc \(\left(x^2-\frac{3}{x}-p\right)=-2;\left(x^2-\frac{3}{x}+p\right)=6\) hoặc 

\(\left(x^2-\frac{3}{x}-p\right)=6;\left(x^2-\frac{3}{x}+p\right)=-2\) hoặc 

\(\left(x^2-\frac{3}{x}-p\right)=-6;\left(x^2-\frac{3}{x}+p\right)=2\)

+) Trường hợp 1 : => p = -4 ; \(x^2-\frac{3}{x}=-2\) => x3 - 3 = -2x => x = 1 

+) Th2: => 2p = 8 => p = 4 =>  \(x^2-\frac{3}{x}=\) 2 => x3 - 3 = 2x => x. (x2 - 2) = 3 ; x nguyên => ko có giá trị x nào thỏa mãn

Tương tự th3; th4.........................

 

17 tháng 6 2015

Mấy bạn lớp 9 giúp mình bài này với

24 tháng 5 2017

Điều kiện \(x\ne0\)

\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)

\(=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|\)

\(=\left|x+\frac{3}{x}\right|+\left|x-2\right|\)

Để A nguyên thì x phải là ước nguyên của 3 hay \(x=-3;-1;1;3\)

22 tháng 7 2019

xin chào bạn

18 tháng 10 2020

\(ĐKXĐ:x\ne0\)

\(A=\sqrt{\frac{\left(x^2-3\right)^2}{x^2}+12}+\sqrt{\left(x+2\right)^2-8x}\)

\(=\sqrt{\frac{x^4-6x^2+9}{x^2}+\frac{12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)

\(=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2-4x+4}\)

\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\sqrt{\frac{\left(x^2+9\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\frac{x^2+9}{\left|x\right|}+\left|x-2\right|=\frac{x^2}{\left|x\right|}+\frac{9}{\left|x\right|}+\left|x-2\right|\)

Vì \(x\inℤ\)\(\Rightarrow\frac{x^2}{\left|x\right|}\inℕ\)\(\left|x-2\right|\inℕ^∗\)

\(\Rightarrow\)Để A có giá trị nguyên thì \(\frac{9}{\left|x\right|}\inℕ^∗\)

\(\Rightarrow\left|x\right|\in\left\{1;3;9\right\}\)\(\Rightarrow x\in\left\{\pm1;\pm3;\pm9\right\}\)

Vậy \(x\in\left\{\pm1;\pm3;\pm9\right\}\)