cho tam giác ABC có góc A = 90 độ, góc B = 36 độ. Trên tia đối của tia CB lấy E , hạ EK vuông AC ( K thuộc đường thẳng AC) gọi EM là phân giác góc CEK ( M thuộc CK )
a, CM góc ACB = góc ECK
b,CM AB//EK
c, Tính góc MEK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đọc lai đề coi có sai chỗ nào không ạ, mình vẽ hình thì nó không vuông góc
Ta có góc CEB là góc ngoài của tam giác AEB
nên \(\widehat{CEB}=50^{^0}+10^0=60^0\)
góc EFA là góc ngoài của tam giác AFB tại đỉnh F
nên \(\widehat{EFA}=20^{0^{ }}+10^{0^{ }}=30^0\)
suy ra góc EAF = góc EFA = 300
suy ta tam giác EAF cân tại E, mà I là trung điểm của AF
suy ra EI vuông góc với AF tại I
suy ra góc AEK= góc KEB=60 độ
Xét tam giác EBK và tam giác EBC có
BE chung; góc AEK= góc KEB (CMT), góc CBE=góc KBC (GT)
suy ra tam giác EBK = tam giác EBC (g.c.g)
suy ra BK=BC
suy ra tam giác BCK cân tại B
suy ra góc KCB = (180độ - góc CBK ) :2 = 80 độ
Xét tam giác BCH có góc BHC= 180 độ - (góc BCH + góc CBH) = 90 độ
vậy BE vuông góc với CK tại H
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)