Cho biết (5a-3b+4c)(5a-3b-4c)=(3a-5b)^2
Cm a b c là độ dài ba cạnh của một tam giác vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(3a-5b\right)^2\\ 25a^2-15ab-20ac-15ab+9b^2+12bc+20ac-12bc-16c^2=9a^2-30ab+25b^2\\ \Leftrightarrow25a^2+9b^2-16c^2-30ab=9a^2-30ab+25b^2\\ \Leftrightarrow25a^2+9b^2-16c^2=9a^2+25b^2\\ \Leftrightarrow25a^2-9a^2=-9b^2+25b^2+16c^2\\ \Leftrightarrow16a^2-=16b^2+16c^2\\ \Leftrightarrow a^2=b^2+c^2\)
Vậy ...
\(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(3a-5b\right)^2\)
\(\Leftrightarrow25a^2-15ab-20ac-15ab+9b^2+12bc+20ac-12bc-16c^2=9a^2-30ab+25b^2\)
\(\Leftrightarrow25a^2-30ab+9b^2-16c^2=9a^2-30ab+25b^2\)
\(\Leftrightarrow25a^2+9b^2-16c^2=9a^2+25b^2\)
\(\Leftrightarrow16a^2=16c^2+16b^2\)
\(\Rightarrow a^2=b^2+c^2\)
\(\Rightarrow\Delta\) với 3 cạnh a, b, c vuông
\(\Rightarrow\Delta\) có độ dài 3 cạnh trên là \(\Delta\) vuông ( đpcm )
Vậy...
VT := [(5a - 3b) + 8c][(5a - 3b) - 8c]
= (5a - 3b)^2 - 64c^2 (theo hiệu hai bình phương)
= 25a^2 - 30ab + 9b^2 - 64c^2 (theo bình phương của hiệu)
= 25a^2 - 30ab + 9b^2 - 16(a^2 - b^2) (vì 4c^2 = a^2 - b^2)
= 9a^2 - 30ab + 25b^2
= (3a - 5b)^2 (theo bình phương của hiệu).
Ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=\left(5a-3b\right)^2-16.4c^2\)
\(=\left(5a-3b\right)^2-16\left(a^2-b^2\right)\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\left(đpcm\right)\)
bài này hơi khó bạn ơi, mk mới 6 lên 7 nên ko rõ
Ta có : \(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(5a-3b\right)^2-16c^2\)
Mà theo đề \(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(3a-5b\right)^2\)
nên \(\left(5a-3b\right)^2-16c^2=\left(3a-5b\right)^2\)
\(\Leftrightarrow\left(5a-3b\right)^2-\left(3a-5b\right)^2=16c^2\)
\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=16c^2\)
\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=16c^2\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)=c^2\Leftrightarrow a^2-b^2=c^2\)
\(\Rightarrow a^2=b^2+c^2\) nên \(a;b;c\) là độ dài 3 cạnh tam giác vuông theo Pytago đảo