K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

3 câu như nhau cả thôi :v

\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{55\cdot57}\)

\(A=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{55\cdot57}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{55}-\frac{1}{57}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{57}\right)\)

\(A=\frac{1}{2}\cdot\frac{56}{57}\)

\(A=\frac{28}{57}\)

1 tháng 3 2017

3) Ta có : \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

1 tháng 3 2017

4)

A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

A = \(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)

A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

A = \(\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{100}{101}\)

A = \(\frac{50}{101}\)

2, đặt tên biểu thức trên là A. Ta có :

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{100}{101}\)

1) \(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(=1-\frac{1}{5}\)

\(=\frac{4}{5}\)

còn cần không bạn, mk làm cho

12 tháng 8 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x.\left(x+2\right)}\right)=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}=\frac{1}{41}\)

=> x + 2 = 41 

=> x = 39

Câu 2:

\(D=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)

Câu 3: 

\(E=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{205}-\dfrac{1}{207}\right)\)

\(=2\cdot\left(1-\dfrac{1}{207}\right)=2\cdot\dfrac{206}{207}=\dfrac{412}{207}\)

Câu 5: 

\(G=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{16}{17}=\dfrac{4}{17}\)

17 tháng 9 2020

sai bet thang ngu nhu cho

28 tháng 3 2018

Ta có: *)A.5=5(1/3.8+1/8.13+...+1/33.38)

                  =5/3.8+5/8.13+...+5/33.38

                  =1/3-1/8+1/8-1/13+...+1/33-1/38

                  =1/3-1/38

=> A=(1/3-1/38).1/5

*)7B=7/3.10+7/10.17+7/17.24+...+7/31.38

       =1/3-1/10+1/10-1/17+...+1/31-1/38

       =1/3-1/38

=>B=(1/3-1/38).1/7

Do đó a/b=(1/5)/(1/7)=7/5

k mk nha!

  

5 tháng 8 2017

\(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{1}{55}\)

\(B=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}\)

\(B=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{10.11}\)

\(B=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(B=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)

làm cả 3 nhé