tam thức bậc hai là đa thức có dạng f(x) = ax2 + bx + c với a, b, c là hằng số, a ≠ 0. Hãy xác định các hệ số a, b biết f(1) = 2; f(3) = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1
=>2 và 1 cũng là nghiệm của B(x)
<=>B(1)=0 và B(2)=0
<=>2+a+b+4=0 và 16+4a+2b+4=0
<=>a+b=-6 và 2(2a+b)=-20
<=>a+b=-6 và 2a+b=-10
Suy ra:a=-4 và b=-2
\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)
\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên
\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)
\(\Rightarrow2b\) nguyên
\(\Rightarrowđpcm\)
Nếu f(1)=2 thì:
\(2+a+b+6=2\)
\(\Rightarrow a+b=-6\)
Nếu f(-1)=12 thì:
\(-2+a-b+6=12\)
\(\Rightarrow a-b=8\)
Giá trị a và b thoả mãn là rất lớn nên mình không lập bảng.
Ta có: \(f\left(0\right)=a.0^2+b.0+c=c=1\)
\(f\left(1\right)=a.1^2+b.1+c=a+b+c=2\Rightarrow a+b+1=2\Rightarrow a+b=1\) (1)
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c=2\Rightarrow2\left(2a+b\right)+1=2\Rightarrow2\left(2a+b\right)=1\Rightarrow2a+b=\frac{1}{2}\) (2)
Lấy (2) trừ (1) ta được: \(a=\frac{-1}{2}\)
\(\Rightarrow b=1-\left(\frac{-1}{2}\right)=\frac{3}{2}\)
Vậy a = -1/2 , b = 3/2 , c = 1
\(a\ne0\)
\(f\left(1\right)=2\)
\(\Rightarrow a+b=2\)
\(f\left(3\right)=8\)
\(\Rightarrow3a+b=8\)
\(\Rightarrow2a+a+b=8\)
\(\Rightarrow2a=6\)
\(\Rightarrow a=3\)
\(\Leftrightarrow b=-1\)
Vậy đa thức đã cho là \(f\left(x\right)=3x-1\)
a≠0
ƒ (1)=2
⇒a+b=2
ƒ (3)=8
⇒3a+b=8
⇒2a+a+b=8
⇒2a=6
⇒a=3
⇔b=−1
Vậy đa thức đã cho là ƒ (x)=3x−1