1a, Vẽ góc AOB = 40=40 độ
b, Vẽ góc A'OB' là góc đối đỉnh với AOB
c,theo cách vẽ đó ta có thêm mấy cặp góc nào là hai góc đối đỉnh.tại sao
d,vẽ oy là tia phân giác của góc AOB, vẽ oy' là tia đối của oy.chứng tỏ oy' là tia phân giác của góc A'OB'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Oy là tia đối của Ox nên
xOA=yOC
xOD=yOB
Mà xOA=xOD nên
yOC=yOC
Vậy Oy là tia phân giác của COB
a) Ta có:
\(\widehat{aOx}=\widehat{bOx}=\dfrac{\widehat{aOb}}{2}=\dfrac{150^0}{2}=75^0\) ( vì Ox là p.giác của \(\widehat{aOb}\) )
\(\widehat{aOx}+\widehat{aOy}=180^0\) ( kề bù )
\(\widehat{aOy}=\widehat{aOc}+\widehat{cOy}\)
⇒ \(\widehat{aOx}+\widehat{aOc}+\widehat{cOy}=180^0\)
⇒ \(\widehat{cOy}=180^0-\left(\widehat{aOx}+\widehat{aOc}\right)\)
\(=180^0-\left(75^0+90^0\right)\)
\(=180^0-165^0\)
\(=15^0\) (1)
\(\widehat{xOb}+\widehat{bOy}=180^0\) ( kề bù )
\(\widehat{bOy}=\widehat{bOd}+\widehat{dOy}\)
⇒ \(\widehat{xOb}+\widehat{bOd}+\widehat{dOy}=180^0\)
⇒ \(\widehat{dOy}=180^0-\left(\widehat{xOb}+\widehat{bOd}\right)\)
\(=180^0-\left(75^0+90^0\right)\)
\(=180^0-165^0\)
\(=15^0\) (2)
Từ (1) và (2) ⇒ \(\widehat{dOy}=\widehat{cOy}\left(=15^0\right)\)
⇒ Oy là phân giác của \(\widehat{dOc}\)
b) \(\widehat{xOc}=\widehat{aOx}+\widehat{aOc}\)
\(=75^0+90^0\)
\(=165^0\)
\(\widehat{yOb}=\widehat{yOd}+\widehat{dOb}\)
\(=15^0+90^0\)
\(=105^0\)
⇒ \(\widehat{xOC}>\widehat{yOB}\) \(\left(165^0>105^0\right)\)
Ta có:
AOBˆ=A′OB′ˆ (đối đỉnh); 12AOBˆ=AOxˆ=BOxˆ(do Ox là tia phân giác AOBˆ)
Ta lại có:
AOxˆ=A′Ox′ˆ(đối đỉnh); BOxˆ=B′Ox′ˆ (đối đỉnh)
⇒A′Ox′ˆ=B′Ox′ˆ
⇒ Ox' là tia phân giác A′OB′ˆ (đpcm)
Chúc bạn học tốt!!!