Chứng minh đẳng thức:
\(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\) với x>0; y>0;\(x\ne y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=x-y\)
vậy.....
\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right).\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\frac{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=x-y\)( đpcm )
\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\)\(\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)
\(=-\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{z}-\sqrt{x}\right)}-\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)\(-\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)
\(=\frac{-x\left(\sqrt{y}-\sqrt{z}\right)-y\left(\sqrt{z}-\sqrt{x}\right)-z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{-x\sqrt{y}+x\sqrt{z}-y\sqrt{z}+y\sqrt{x}-z\sqrt{x}+z\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{-\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\sqrt{z}\left(x-y\right)-z\left(\sqrt{x}-y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{-\sqrt{xy}+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)-z}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{-\sqrt{xy}+\sqrt{xz}+\sqrt{yz}-z}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{\sqrt{y}\left(\sqrt{z}-\sqrt{x}\right)-\sqrt{z}\left(\sqrt{z}-\sqrt{x}\right)}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{y}-\sqrt{z}\right)}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(\left|\frac{x+y}{2}-\sqrt{xy}\right|+\left|\frac{x+y}{2}+\sqrt{xy}\right|=\left|\frac{x+2\sqrt{xy}+y}{2}\right|+\left|\frac{x-2\sqrt{xy}+y}{2}\right|\)
=\(\left|\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2}\right|+\left|\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2}\right|\) (*)
Có \(\left(\sqrt{x}+\sqrt{y}\right)^2\ge0\Rightarrow\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2}\ge0\)
\(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\Rightarrow\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2}\ge0\)
\(\Rightarrow\) (*) \(\Leftrightarrow\) \(\frac{x+2\sqrt{xy}+y+x-2\sqrt{xy}+y}{2}=\frac{2\left(x+y\right)}{2}=x+y=\left|x\right|+\left|y\right|\) ( vì x ; y >0)
Với x,y < 0 , đẳng thức trên sai ngay từ bước biến đổi (*) , vì x,y <0 thì \(\sqrt{x}\) và \(\sqrt{y}\) không xác định
Với \(x;y< 0\) đẳng thức vẫn đúng, do \(x;y< 0\Rightarrow xy>0\) ta biến đổi như sau:
\(\left|\frac{-\left|x\right|-\left|y\right|-2\sqrt{\left|x\right|\left|y\right|}}{2}\right|+\left|\frac{-\left|x\right|-\left|y\right|+2\sqrt{\left|x\right|\left|y\right|}}{2}\right|\)
\(=\left|\frac{-\left(\left|x\right|+2\sqrt{\left|x\right|\left|y\right|}+\left|y\right|\right)}{2}\right|+\left|\frac{-\left(\left|x\right|-2\sqrt{\left|x\right|\left|y\right|}+\left|y\right|\right)}{2}\right|\)
\(=\left|\frac{-\left(\sqrt{\left|x\right|}+\sqrt{\left|y\right|}\right)^2}{2}\right|+\left|\frac{-\left(\sqrt{\left|x\right|}-\sqrt{\left|y\right|}\right)^2}{2}\right|\)
\(=\frac{\left(\sqrt{\left|x\right|}+\sqrt{\left|y\right|}\right)^2}{2}+\frac{\left(\sqrt{\left|x\right|}-\sqrt{\left|y\right|}\right)^2}{2}\)
\(=\left|x\right|+\left|y\right|\)
Ta có:
\(VT=\left(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\right)\\ =\left(\frac{\sqrt{x}\cdot\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\right)\\ =\left(\frac{\sqrt{xy}\left[\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2\right]}{\sqrt{xy}}\right)\\ =x-y=VP\left(đpcm\right)\)
Vậy với x>0, y>0 ta có đpcm
\(\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)= x-y
=\(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=x-y\)
= \(x-y=x-y\)
tớ ra kết quả là 2+\(\frac{5\sqrt{xy}}{x-\sqrt{xy}+y}\) mà thấy số xấu quá :(
ĐK: \(x,y>0;x\ne y\)
\(VT=\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{x^2y}-\sqrt{xy^2}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}=VP\)
\(\Rightarrow\)đpcm
Ta có: \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)
TK nha!