(4x+3)(4x-3) - (4x-5)2 =46
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-\left(16x^2-40x+25\right)=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25=46\)
\(\Leftrightarrow40x-34=46\Leftrightarrow40x=80\Leftrightarrow x=2\)
a) \(\left(x+3\right)^2-\left(2x+1\right).\left(2x-1\right)=22\)
\(\Leftrightarrow x^2+6x+9-\left(4x^2-1\right)=22\)
\(\Leftrightarrow x^2+6x+9-4x^2+1=22\)
\(\Leftrightarrow-3x^2+6x-12=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\)(vô lý)
b) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-\left(16x^2-40x+25\right)=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25-46=0\)
\(\Leftrightarrow40x-80=0\)
\(\Leftrightarrow x=2\)
Bài 1:
\(\left(2x-5\right)^2-4\left(2x-5\right)+4=0\)
\(\left(2x-5\right)^2-2\left(2x-5\right)\left(2\right)+2^2=0\)
\(\left(2x-5-2\right)^2=0\)
\(2x-5-2=0\)
\(2x-7=0\)
\(2x=0+7\)
\(2x=7\)
\(x=\frac{7}{2}\)
Bài 3:
\(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\left(4x\right)^2-3^2-16x^2+40x-25=46\)
\(4^2x^2-3^2-16x^2+40x-25=46\)
\(16x^2-9-16x^2+40x-25=46\)
\(-34+40x=46\)
\(40x-34=46\)
\(40x=46+34\)
\(40x=80\)
\(x=2\)
bài 2:
a) \(81^2=\left(80+1\right)^2=80^2+2.80+1=6400+160+1=6561\)
b) \(99^2=\left(100-1\right)^2=100^2-2.100+1=10000-200+1=8801\)
a) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25=46\)
\(\Leftrightarrow40x=46+9+25=80\)
\(\Leftrightarrow x=2\)
b) \(\left(x+1\right)^3+2x-\left(x-1\right)^3-3\left[\left(x+1\right)^2+\left(x-1\right)^2\right]+5=0\)
\(=x^3+3x^2+3x+1+2x-x^3+3x^2-3x+1-3\left(x^2+2x+1+x^2-2x+1\right)+5=0\)
\(=6x^2+2x+2-3\left(2x^2+2\right)+5=0\)
\(\Leftrightarrow6x^2+2x+2-6x^2-6+5=0\)
\(\Leftrightarrow2x=-2+6-5=-1\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(PT\Leftrightarrow x^5-1=4\left(x^4+x^3+x^2+x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=4\left(x^4+x^3+x^2+x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x^4+x^3+x^2+x+1=0\end{matrix}\right.\).
Nếu \(x^4+x^3+x^2+x+1=0\Rightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\Leftrightarrow x^5-1=0\Leftrightarrow x^5=1\Leftrightarrow x=1\). Thử lại ta thấy không thoả mãn.
Do đó ta có \(x-1=4\Leftrightarrow x=5\).
Vậy...
.
a: A=(4x+5)^2-2*(4x+5)(4x-5)+(4x-5)^2
=(4x+5-4x+5)^2
=10^2=100
b: B=(3x-2)^2*(3x+2)^2-2(2x+3)(2x-3)
=(9x^2-4)^2-2(4x^2-9)
=81x^4-72x^2+16-8x^2+18
=81x^4-80x^2+34
\(a,A=\left(4x-5\right)^2+\left(4x+5\right)^2+2\left(5+4x\right)\left(5-4x\right)\)
\(=\left(5-4x\right)^2 +2\left(5-4x\right)\left(4x+5\right)+\left(4x+5\right)^2\)
\(=\left(5-4x+4x+5\right)^2\)
\(=10^2\)
\(=100\)
\(b,B=\left(3x-2\right)^2\left(3x+2\right)^2-2\left(2x+3\right)\left(2x-3\right)\)
\(=\left(9x^2-4\right)^2-2\left(4x^2-9\right)\)
\(=81x^4-72x^2+16-8x^2+18\)
\(=81x^4-80x^2+34\)
#\(Urushi\)
\(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow\)\(16x^2-9-\left(16x^2-40x+25\right)=46\)
\(\Leftrightarrow\)\(40x-34=46\)
\(\Leftrightarrow\)\(40x=80\)
\(\Leftrightarrow\)\(x=2\)
Vậy...