Cho 3m -2m =1.Biết m,n thuộc N. Chứng tỏ rằng m,n nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN (2m;2m+1)=d
(2m+1) -2m ⋮ d → 1 ⋮ d → d=1
ƯCLN(2m,2m+1) =1
Vậy 2m và 2m+1 là số nguyên tố cùng nhau
GỌi d là ƯC(2m+1,2m)
=>2m chia hết cho d
=>2m+1 chia hết cho d
=> (2m+1)-(2m) chia hết cho d
=>1 chia hết cho d
=> d =1
vậy 2m và 2m+1 là 2 số nguyên tố cùng nhau
Giải:
Gọi \(d=UCLN\left(n+1;3n+4\right)\)
Ta có:
\(n+1⋮d\Rightarrow3n+3⋮d\)
\(3n+4⋮d\)
\(\Rightarrow3n+4-3n+3⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=UCLN\left(n+1;3n+4\right)=1\)
\(\Rightarrow n+1\) và 3n + 4 là 2 số nguyên tố cùng nhau
Vậy...
CMR: n+1 & 3n+4 là 2 số nguyên tố cùng nhau
G/s: ƯCLN(n+1;3n+4) = d
Ta có:
n+1 =>3.(n+1) =>3n+3
3n+4=>1.(3n+4)=>3n+4
=> (3n+4) - (3n+3) \(⋮\) d
=> 3n+4 - 3n-3 \(⋮\) d
=> 1 \(⋮\) d => d \(\in\) ƯC(1) = \(\left\{1\right\}\)
KL: Vậy n+1 & 3n+4 là 2 số nguyên tố cùng nhau
a chia hết cho m
a chia hết cho n
Nên a là BC(m;n)=m.n suy ra a chia hết cho m.n
$3m-2m=1$ thì $m=1$. Còn $n$ ở đâu bạn?