K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

Thử n=1 là thấy sai đề nha

\(P\left(n\right)=2^2+4^2+...+\left(2n\right)^2=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}\)     (1)

\(n=1\) ta có: \(P\left(n\right)=2^2=\dfrac{2\cdot2\cdot3}{3}=4\)    => (1) đúng với n=1

Giả sử (1) đúng với n tức là \(2^2+4^2+...+\left(2n\right)^2=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}\)

Ta sẽ c/m (1) đúng với n+1

Có \(2^2+4^2+...+\left(2n\right)^2+\left(2n+2\right)^2\)

\(=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}+4\left(n+1\right)^2\)

\(=\left(n+1\right)\dfrac{2n\left(2n+1\right)+12\left(n+1\right)}{3}=\dfrac{\left[2n+2\right]\left(n+2\right)\left(2n+3\right)}{3}\)

=> (1) đúng với n+1

Theo nguyên lý quy nạp ta có đpcm

 

18 tháng 6 2021

a) \(2+4+6+...+2n=n\left(n+1\right)\)       (1)

\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\)  ( đúng)

Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1

Có \(2+4+6+...+2n+2\left(n+1\right)\)

\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)

=> (1) đúng với n+1

Theo nguyên lý quy nạp ta có đpcm

b) sai đề nha, mình search google thì được như này =))

 \(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\)     (2)

\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\)   (đúng) 

giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)

Ta c/m (2) đúng với n+1

Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)

\(=2n^4+8n^3+11n^2+6n+1\)

\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)

\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\)   => (2) đúng với n+1

Theo nguyên lý quy nạp ta có đpcm

 

23 tháng 7 2017

Với n=2 thì \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n=3.4.5...4>2^2=4\)

=> bất đẳng thức \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\)đúng với n=2

Gỉa sử bất đẳng thức \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\) đúng với n=k (\(k\ge2;k\in N\)), khi đó ta có:

\(\left(k+1\right)\left(k+2\right)\left(k+3\right)...2k>2^k\) (giả thiết quy nạp)

Ta phải chứng minh bất đẳng thức trên đúng với n=k+1, tức là phải chứng minh \(\left(k+2\right)\left(k+3\right)\left(k+4\right)...2\left(k+1\right)>2^{k+1}\)

Ta có: \(\left(k+1\right)\left(k+2\right)\left(k+3\right)...2k>2^k\) (giả thiết)

\(\Rightarrow\left(k+1\right)\left(k+2\right)\left(k+3\right)...2k.\left(2k+1\right)>2^k\)

\(\Rightarrow2.\left(k+1\right)\left(k+2\right)\left(k+3\right)...\left(2k+1\right)>2.2^k\)

\(\Rightarrow\left(k+2\right)\left(k+3\right)\left(k+4\right)...\left(2k+1\right)\left(2k+2\right)>2^{k+1}\)

\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\) đúng với n=k+1

Vậy với mọi số tự nhiên n>1 thì \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\)

12 tháng 11 2021

b: Vì 12n+1 là số lẻ

và 30n+2 là số chẵn

nên 12n+1/30n+2 là phân số tối giản

26 tháng 12 2015

chả có j mà ngồi cười như thật!

26 tháng 12 2015

Đặt \(A=6^{2n+1}+5^{n+2}\)

Với n=0

=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31

Giả sử n=k thì A sẽ chia hết cho 31

=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31

Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31

 thật vậy

\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)

\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)

Theo giả thiết ta có

\(6^{2k+1}+5^{k+2}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31

\(31.6^{2k+1}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31

Hay \(A\left(k+1\right)\) chia hết cho 31

Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31