Cho tam giác đều ABC có đường cao AH. Trên đường thẳng BC lấy điểm M nằm ngoài đoạn BC sao cho MB > MC và hình chiếu vuông góc của M trên AB là P (P nằm giữa A và B). Kẻ MQ vuông góc với đường thẳng AC tại Q.
1. Chứng minh 4 điểm A, P, Q, M cùng nằm trên một đường tròn. Xác định tâm O của đường tròn đó.
2. Chứng minh: BA.BP = BM.BH.
3. Chứng minh OH vuông góc với PQ.
4. Chứng minh: PQ > AH.
a. Các góc APH, góc AQM = 9o độ nên các điểm A,P,Q, M thuộc đường tròn tâm O đường kính AM
b. ^AHM = 90 độ nên H trên (O) . Xét hai tg PBH và tg MBA có ^PBH chung ^BPH = ^AMB(cùng bù ^APH) nên tg PBH đồng dạng tg MBA nên có : BP.BA = BH.BM
c. Tg ABC đều có AH trung tuyến nên AH phân giác suy ra ^PAH = ^CAQ = ^QAH nên cung PH = cung HQ nên OH là bán kính qua điểm chính giửa của cung nên qua trung điểm của dây PQ vậy OH vuông góc PQ.
d.Có PQ > AC nmaf AC > AH nên PQ >AH