K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

A B C H K D M N E

a) Ta có  \(\Delta ABC\)cân tại A  \(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)

Do BD là phân giác  \(\widehat{ABC}\)\(\Rightarrow\widehat{ABD}=\widehat{DBC}\)

          CE là phân giác  \(\widehat{ACB}\)\(\Rightarrow\widehat{ACE}=\widehat{ECB}\)

Mà \(\Delta ABC\)cân  \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Suy ra  \(\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)

Xét  \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)( tự xét nha :)))

\(\Rightarrow AD=AE\)\(\Rightarrow\Delta AED\)cân tại A 

\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\widehat{AED}=\widehat{ABC}\)

Mà hai góc đó ở vị trí đồng vị

\(\Rightarrow ED//BC\)

Lại có :  \(\widehat{ABC}=\widehat{ACB}\)

Suy ra : BEDC là hình thang cân (3)

Ta có :  \(ED//BC\Rightarrow\widehat{EDB}=\widehat{DBC}\)( so le trong )

Mà  \(\widehat{EBD}=\widehat{DBC}\)

Suy ra  \(\widehat{EDB}=\widehat{EBD}\)\(\Rightarrow\Delta BED\)cân tại E 

\(\Rightarrow EB=ED\left(4\right)\)

Từ (3) và (4)  \(\Rightarrow\)BEDC là hình thang cân có cạnh bên bằng đáy nhỏ -_-

b) Xét  \(\Delta ABH=\Delta ACK\left(ch-gn\right)\)( tự xét )

\(\Rightarrow AK=AH\)\(\Rightarrow\Delta AKH\)cân tại A

\(\Rightarrow\widehat{AKH}=\frac{180^o-\widehat{BAC}}{2}\left(5\right)\)

Từ (1) và (5)  \(\Rightarrow\widehat{AKH}=\widehat{ABC}\)

Mà hai góc trên ở vị trí đồng vị 

Suy ra : KH // BC

Lại có  : \(\widehat{ABC}=\widehat{ACB}\)

Suy ra : BKHC là hình thang cân 

c) Do BM là trung tuyến  \(\Rightarrow AM=\frac{1}{2}AC\)

          CN là trung tuyến  \(\Rightarrow AN=\frac{1}{2}AB\)

Mà AB = AC  \(\Rightarrow AN=AM\)

\(\Rightarrow\Delta AMN\)cân tại A  \(\Rightarrow\widehat{ANM}=\frac{180^o-\widehat{BAC}}{2}\left(6\right)\)

Từ (1) và (6)  \(\Rightarrow\widehat{ANM}=\widehat{ABC}\)

Mà hai góc trên ở vị trí đồng vị 

\(\Rightarrow MN//BC\)

Lại có :  \(\widehat{ABC}=\widehat{ACB}\)

Suy ra BNMC là hình thang cân 

Vậy ...

13 tháng 7 2018

Cân tại đâu?

13 tháng 7 2018

CHO TAM GIÁC ABC CÂN TẠI A

A/ĐƯỜNG PHÂN GIÁC BD,EC (D ∈ AC ,E ∈ AB).CMR TỨ GIÁC BEDC LÀ HÌNH THANG CÂN CÓ CẠNH BÊN BẰNG ĐÁY NHỎ

B/ĐƯỜNG CAO BH,CK (H ∈ AC, K ∈ AB).CMR: BKHC LÀ HÌNH THANG CÂN

C/ĐƯỜNG TRUNG TUYẾN BM ,CN (M ∈ AC, N ∈ AB). CMR :BNCM LÀ HÌNH THANG CÂN

GIÚP VS BẠN ƠI

26 tháng 10 2022

a: Xét ΔADB và ΔAEC có

góc BAD chung

AB=AC

góc ABD=góc ACE

Do đó: ΔADB=ΔAEC

Xét ΔABC có AE/AB=AD/AC

nên ED//BC

=>BEDC là hình thang

mà góc EBC=góc DCB

nên BEDC là hình thang cân

Xét ΔEDB có góc EDB=góc EBD(=góc DBC)

nên ΔEDB cân tại E

=>BE=ED=DC

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH chung

Do đó ΔAHB=ΔAKC

=>AH=AK

Xét ΔABC có AK/AB=AH/AC

nên KH//BC

=>BKHC là hình thang

mà góc KBC=góc HCB

nên BKHC là hình thang cân

c: Xét ΔABC có AN/AB=AM/AC

nên NM//BC

=>BNMC là hình thang

mà góc B=góc C

nên BNMC là hình thang cân

26 tháng 10 2022

a: Xét ΔADB và ΔAEC có

góc BAD chung

AB=AC

góc ABD=góc ACE

Do đó: ΔADB=ΔAEC

b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

=>BEDC là hình thang

mà góc EBC=góc DCB

nên BEDC là hình thang cân

Xét ΔEDB có góc EDB=góc EBD(=góc DBC)

nên ΔEDB cân tại E

=>BE=ED=DC

21 tháng 6 2019

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

- Chứng minh tứ giác BCDE là hình thang cân:

+ ΔABC cân tại A Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

BD là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

CE là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Xét ΔAEC và ΔADB có:

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔAEC = ΔADB

⇒ AE = AD

Vậy tam giác ABC cân tại A có AE = AD

Theo kết quả bài 15a) suy ra BCDE là hình thang cân.

- Chứng minh ED = EB.

ED // BC ⇒ Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc so le trong)

Mà Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇒ ΔEDB cân tại E ⇒ ED = EB.

Vậy ta có EBCD là hình thang cân có đáy nhỏ bằng cạnh bên.

22 tháng 7 2017

ABCED

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

Bài b ko biết hi hi k mình ra

  
22 tháng 7 2017

Tiếp câu b .

Có : \(\Delta ABC\) cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)         (1)

Theo tổng 3 góc trong 1 tam giác :

Với \(\Delta ABC\) => \(\widehat{ABC}+\widehat{ACB}+\widehat{A}=180^0\)

=> \(\widehat{ABC}+\widehat{ACB}=130^0\)

Lại có (1) 

=> \(\widehat{ABC}=\widehat{ACB}=\frac{130^0}{2}=65^0\)

Vì tứ giác là hình thang cân (chắc cũng biết tứ giác nào nhỉ :v )

=> ED // BC

=> \(\widehat{DEB}+\widehat{EBC}=180^0\)

=> \(\widehat{DEB}=180^0-65^0=115^0\)

Tương tự với góc \(\widehat{EDC}\)

31 tháng 10 2016

mi sao ngu thế! middusng là ngu thật

28 tháng 7 2017

đúng là ngu thật dễ thế mà không ra

23 tháng 8 2021

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

Hok tốt ! Nếu thấy đúng thì k cho mìn !

7 tháng 7 2016

A B C E D

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

30 tháng 7 2016


 

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.