Tìm các số nguyên n để các phân số sau có giá rị là 1 số nguyên
a) n - 5/ n - 3
b) 2n + 1 / n + 1
GIÚP MÌNH VỚI MAI MÌNH KIỂM TRA RỒI =)) Cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}\)
\(=\frac{3\left(2n-1\right)+8}{2n-1}\)
\(=3+\frac{8}{2n-1}\)
Để B nguyên thì \(2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Rồi bạn cứ thế vào . Trường Hợp ở đây là : \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
Ta có : \(2n-1=1\Rightarrow n=1\)
\(2n-1=-1\Rightarrow n=0\)
\(2n-1=2\Rightarrow n=1,5\)
\(2n-1=-2\Rightarrow n=-0,5\)
\(2n-1=4\Rightarrow n=2,5\)
\(2n-1=-4\Rightarrow n=-1,5\)
\(2n-1=8\Rightarrow n=4,5\)
\(2n-1=-8\Rightarrow n=-3,5\)
Để B nguyên thì 6n + 5 chia hết cho 2n - 1
=> 6n - 3 + 8 chia hết cho 2n - 1
=> 3.(2n - 1) + 8 chia hết cho 2n - 1
Do 3.(2n - 1) chia hết cho 2n - 1 => 8 chia hết cho 2n - 1
Mà 2n - 1 là số lẻ => \(2n-1\in\left\{1;-1\right\}\)
=> \(2n\in\left\{2;0\right\}\)
=> \(n\in\left\{1;0\right\}\)
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
1)
\(\frac{3n+2}{n-1}\) là số nguyên khi \(\left(3n+2\right)⋮\left(n-1\right)\).
\(3n+2=3n-3+3+2=3\left(n-1\right)+5\)
Mà \(3\left(n-1\right)⋮\left(n-1\right)\) nên để \(\left[3\left(n-1\right)+5\right]⋮\left(n-1\right)\) thì \(5⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(5\right)\) hay \(\left(n-1\right)\in\) { -5; -1; 1; 5 } ( Không viết được dấu ngoặc nhọn nên mình viết vậy nhé )
\(\Rightarrow n\in\) { -4; 0; 2; 6 }
Vậy \(n\in\) { -4; 0; 2; 6 }
2)
a)\(\frac{1}{6};\frac{1}{3};\frac{1}{2};...\)
Quy đồng mẫu các phân số ta có:
\(\frac{1}{6};\frac{2}{6};\frac{3}{6};...\)
\(\Rightarrow\)3 phân số tiếp theo là \(\frac{4}{6}\)hay \(\frac{2}{3}\); \(\frac{5}{6}\)và \(\frac{6}{6}\)hay 1.
Vậy 3 phân số tiếp theo là \(\frac{2}{3}\); \(\frac{5}{6}\)và 1.
b)
Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{7}{20};\frac{2}{5};\frac{9}{20}\).
c)
Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{11}{30};\frac{2}{5};\frac{13}{30}\)
Câu 1:
a) \(\dfrac{n-5}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(n-5⋮n-3\)
\(\Rightarrow n-3-2⋮n-3\)
\(\Rightarrow2⋮n-3\)
\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng giá trị:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
Vậy \(n\in\left\{-1;0;2;3\right\}\)
b) \(\dfrac{2n+1}{n+1}\)
Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(2n+1⋮n+1\)
\(\Rightarrow2n+2-1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
n-1 | -1 | 1 |
n | 0 | 2 |
Vậy \(n\in\left\{0;2\right\}\)
Câu 2:
a) \(\dfrac{n+7}{n+6}\)
Gọi \(ƯCLN\left(n+7;n+6\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản
b) \(\dfrac{3n+2}{n+1}\)
Gọi \(ƯCLN\left(3n+2;n+1\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản
a) \(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)là số nguyên tương đương với \(\frac{2}{n-1}\)là số nguyên
mà \(n\)là số nguyên nên \(n-1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow n\in\left\{-1,0,2,3\right\}\).
b) \(\frac{3n+1}{n+1}=\frac{3n+3-2}{n+1}=3-\frac{2}{n+1}\)là số nguyên tương đương với \(\frac{2}{n+1}\)là số nguyên
mà \(n\)là số nguyên nên \(n+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow n\in\left\{-3,-2,0,1\right\}\).
n+1 chia hết cho n-3
=> n-3+4 chia hết cho n-3
=> n-3 chia hết cho n-3 ; 4 chia hết cho n-3
=> n-3 thuộc Ư(4)={-1,-2,-4,1,2,4}
=> n={2,1,-1,4,5,7}
a) Đặt \(A=\frac{n-5}{n-3}=\frac{n-3-2}{n-3}=\frac{n-3}{n-3}-\frac{2}{n-3}=1-\frac{2}{n-3}\)
Để A là số nguyên
=> 2/n-3 là số nguyên
=> 2 chia hết cho n - 3
=> n - 3 thuộc Ư(2)={1;-1;2;-2}
...
rùi bn tự thay giá trị của n -3 vào để tìm n nhé!
b) Đặt \(B=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=\frac{2.\left(n+1\right)-1}{n+1}=2-\frac{1}{n+1}\)
Để B là số nguyên
=> 1/n+1 là số nguyên
=> 1 chia hết cho n + 1
=> n + 1 thuộc Ư(1) = { 1;-1}
...