K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

Đặt  \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2018}}\right)\)

\(A=1-\frac{1}{2^{2018}}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

hok tốt .

13 tháng 7 2018

xin lỗi nha , mk ko thấy S bạn thay A => S là đc

bạn thông cảm , 

28 tháng 3 2018

a,1/51 > 1/100

  1/52 > 1/100

   1/53 > 1/100

    ...

     1/100=1/100

=>H>1/100 + 1/100 + 1/100 +...+1/100

    H>50/100=1/2   

          1/51<1/50

         1/52<1/50

           ....

           1/100<1/50

=>H<1/50+1/50+...+1/50

     H<50/50=1

 Vay1/2<H<1

21 tháng 9 2023

\(A=1+2+2^2+...+2^{2018}\)

\(2A=2+2^3+2^4+...+2^{2019}\)

\(A=2A-A=1-2^{2019}\)

\(B-A=2^{2019}-\left(1-2^{2019}\right)\)

\(B-A=2^{2019}-1+2^{2019}\)

\(B-A=1\)

`#3107`

\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)

Ta có:

\(A=1+2+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+2^3+...+2^{2019}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)

\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)

\(A=2^{2019}-1\)

Vậy, \(A=2^{2019}-1\)

Ta có:

\(B-A=2^{2019}-2^{2019}+1=1\)

Vậy, `B - A = 1.`

12 tháng 6 2021

                                    Giải

Đặt A=1/21+1/22+1/23+1/24+...+1/80

Ta có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A>(1/40+1/40+...+1/40)+(1/80+..+1/80)

→A>20/40+40/80

→A>1/2+1/2

→A>1 (1)

Lại có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A<(1/20+1/20+...+1/20)+(1/40+...+1/40)

→A<20/20+40/40

→A<2 (2)

Từ (1),(2)→1<A<2

→A không là số tự nhiên

11 tháng 7 2021

Đặt A=1/21+1/22+1/23+1/24+...+1/80

Ta có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A>(1/40+1/40+...+1/40)+(1/80+..+1/80)

→A>20/40+40/80

→A>1/2+1/2

→A>1 (1)

Lại có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A<(1/20+1/20+...+1/20)+(1/40+...+1/40)

→A<20/20+40/40

→A<2 (2)

Từ (1),(2)→1<A<2

→A không là số tự nhiên

6 tháng 4 2017

Số số hạng của biểu thức A là: (40-21):1+1=20(số hạng)

Ta có : 1/21>1/40,1/22>1/40,1/23>1/40,...,1/40=1/40

      1/21+1/22+1/23+...+1/40>1/40+1/40+1/41+1/40+...+1/40( 20 số 1/40)

      A>1/40x20=1/2

      A>1/20  (1)

Lại có: 1/21=1/21,1/21>1/22,1/21>1/23,...,1/21>1/40

      1/21+1/21+1/21+...+1/21(20 số 1/21)>1/21+1/22+1/23+...+1/40

      1/21x20>A

      20/21>A.Mà 1>20/21

    1>A   (2)

Từ (1) và (2) ta có : 1/2<A<1(đpcm)

Vậy bài tôán đđcm

6 tháng 4 2017

\(\frac{1}{2}=\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\)có 20 số hạng      \(\)

\(\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}\)có 20 số hạng

\(\frac{1}{21}>\frac{1}{40}\)

\(\frac{1}{22}>\frac{1}{40}\)

\(.....\)

\(\frac{1}{40}=\frac{1}{40}\)\(\Rightarrow\frac{1}{2}< \frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}\)

\(1=\frac{1}{40}+....+\frac{1}{40}\)có 40 số hạng mà A chỉ có 20 số hạng 

\(\Rightarrow\frac{1}{2}< A< 1\)

27 tháng 8 2023

\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)

\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)

\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)

\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)

\(\Rightarrow dpcm\)