Tìm GTLN của biểu thức:
A=-|2x-3|+5
B=8-( x+1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
a: Ta có: \(A=x^2+2x+5\)
\(=x^2+2x+1+4\)
\(=\left(x+1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
1, Ta có: \(A=3x^2+8x+9=3\left(x^2+\frac{8}{3}x+3\right)=3\left(x^2+\frac{8}{3}x+\frac{16}{9}+\frac{11}{9}\right)\)
\(=3\left(x+\frac{4}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\forall x\)
=> Min A = 11/3 tại x = -4/3
2, Ta có: \(A=-2x^2+6x+3=-2\left(x^2-3x-\frac{3}{2}\right)=-2\left(x^2-3x+\frac{9}{4}-\frac{15}{4}\right)\)
\(=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\le\frac{15}{2}\forall x\)
=> Max A = 15/2 tại x = 3/2
=.= hk tốt!!
a: \(A=\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{x\left(x^2+x+2\right)}\)
\(=\dfrac{4x^2+8x}{\left(x+2\right)}\cdot\dfrac{1}{x\left(x^2+x+2\right)}=\dfrac{4}{x^2+x+2}\)
|x+3|=5
=>x=2(loại) hoặc x=-8(nhận)
Khi x=-8 thì \(A=\dfrac{4}{64-8+2}=\dfrac{4}{58}=\dfrac{2}{29}\)
b: A nguyên
=>x^2+x+2 thuộc {1;-1;2;-2;4;-4}
=>x^2+x+2=2 hoặc x^2+x+2=4
=>x^2+x-2=0 hoặc x(x+1)=0
=>\(x\in\left\{1;0;-1\right\}\)
\(a,\Rightarrow\left[{}\begin{matrix}2x-3=5\\3-2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\\ b,\Rightarrow\left|x-1\right|=1-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=1-3x\\x-1=3x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
a) \(\Rightarrow\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=8\\2x=-2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
b) \(\left|x-1\right|+3x=1\left(đk:x\le\dfrac{1}{3}\right)\)
\(\Rightarrow x-1=3x-1\)
\(\Rightarrow2x=0\Rightarrow x=0\left(tm\right)\)
a: \(A\ge-5\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=-1
\(A=-\left|2x-3\right|+5\)
Ta có: \(\left|2x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|2x-3\right|\le0\forall x\)
\(\Rightarrow-\left|2x-3\right|+5\le5\forall x\)
\(A=5\Leftrightarrow-\left|2x-3\right|=0\Leftrightarrow x=\frac{3}{2}\)
Vậy \(A_{m\text{ax}}=5\Leftrightarrow x=\frac{3}{2}\)
\(B=8-\left(x+1\right)^2\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow8-\left(x+1\right)^2\le8\forall x\)
\(B=8\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy \(A_{m\text{ax}}=8\Leftrightarrow x=-1\)
Các bn ơi giúp mk vs