Cho tứ giác EFGH là hình thang cân EF nhỏ hơn GH và EI và EI là hai đuong cao
Chứng minh rằng HI bằng GI1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBAD có
E là trung điểm của AB
EI//AD
Do đó: I là trung điểm của BD
a: Xét hình thang ABCD có
E là trung điểm của AB
F là trung điểm của DC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: EF//AD//BC
Xét tứ giác EFCB có EF//BC
nên EFCB là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên EFCB là hình thang cân
Nối AC
a, Xét t/g ABC có: EA=EB(gt),FB=FC(gt)
=>EF là đường trung bình của t//g ABC
=>EF // AC (1), EF=1/2AC (2)
CMTT ta có: HG//AC (3), HG = 1/2AC (4)
Từ (1),(2),(3),(4) => EF//HG, EF=HG
=> EFGH là HBH
b, để HBH EFGH là hình thoi <=> EF = EH
=> t/g AHE = t/g BFE
=> góc EAH = góc EBF
=> hình thang ABCD cân
100% mình ko hiểu câu hỏi
Cô mk cho mk cũng ko hiểu