chứng minh rằng với mọi sơn nguyên dương thì
3n+2 - 2n+2 + 3n - 2n chia het cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh với mọi số nguyên dương n thì
3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10
Giải
3^n + 2 – 2^n + 2 + 3^n – 2^n
= 3^n+2 + 3^n – 2^n + 2 - 2^n
= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )
= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )
= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )
= 3^n . 10 – 2^n . 5
= 3^n.10 – 2^n -1.10
= 10.( 3^n – 2^n-1)
Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Trả lời ngắn tí như ri này:
Ta có:\(3.25^n.5\) =\(15.25^n\) \(\equiv15.8^n\left(mod17\right)\) .
\(2^{3n+1}=8^n.2\left(mod17\right)\) .
\(\Rightarrow3.5^{2n+1}+2^{3n+1}\equiv15.8^n+2.8^n\left(mod17\right)\) .
\(=17.8^n\) chia hết cho 17 \(\forall\) so nguyên n.
\(3\cdot5^{2n+1}+2^{3n+1}=3\cdot5^{2n}\cdot5+2^{3n}\cdot2=15\cdot25^n+8^n\cdot2\)
\(=\left(17-2\right)\cdot25^n+8^n\cdot2=17\cdot25^n-2\cdot25^n+8^n\cdot2=17\cdot25^n-2\left(25^n-8^n\right)\)
\(=17\cdot25^n-2\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)
\(=17\cdot25^n-34\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)
vì 17 chia hết cho 17 nên 17*25^n chia hết cho 17(1)
vì 34 chia hts cho 17 nên 34(25^n-1+25^n-2*8+25^n-3*8^2+...+8^n-1) chia hết cho 17
\(\Rightarrow17\cdot25^n-34\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)chia hết cho 17
\(\Rightarrow3\cdot5^{2n+1}+2^{3n+1}\)chia hết cho 17 (đpcm)
3^n+2-2^n+2+3^n-2^n
=3^n(1+3^2)-2^n(2^2+1)
=3^n.10-2^n.5
=3^n.10-2^n-1.10
Với x>0 ta luôn có 3^n chia hết 10, 2^n-1.10 chia hết 10 nên 3^n.10-2^n-1.10 chia hết 10 do vậy 3^n+2-2^n+2+3^n-2^n chia hết 10
3^n-2^+2+3^n-2^n
=3^,10-2^n,5
=3^,10-2^n,5
vậy x>0 ta luôn có 3^n chia hết 10,2^-1,10 chía hết nên 3^n10 chia hết 10 do vậy 3^n+2-2+3^n-2^n chia hết 10