K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

3^n+2-2^n+2+3^n-2^n

=3^n(1+3^2)-2^n(2^2+1)

=3^n.10-2^n.5

=3^n.10-2^n-1.10

Với x>0 ta luôn có 3^n chia hết 10, 2^n-1.10 chia hết 10 nên 3^n.10-2^n-1.10 chia hết 10 do vậy 3^n+2-2^n+2+3^n-2^n chia hết 10

2 tháng 8 2015

3^n-2^+2+3^n-2^n

=3^,10-2^n,5

=3^,10-2^n,5

vậy x>0 ta luôn có 3^n chia hết 10,2^-1,10 chía hết nên 3^n10 chia hết 10 do vậy 3^n+2-2+3^n-2^n chia hết 10

4 tháng 10 2018
6 tháng 2 2022

Chứng minh với mọi số nguyên dương n thì

3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10

                                      Giải

3^n + 2 – 2^n + 2 + 3^n – 2^n

= 3^n+2 + 3^n – 2^n + 2 -  2^n

= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )

= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )

= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )

= 3^n . 10 – 2^n . 5

= 3^n.10 – 2^n -1.10

= 10.( 3^n – 2^n-1)

Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

13 tháng 6 2018

Trả lời ngắn tí như ri này:

Ta có:\(3.25^n.5\) =\(15.25^n\) \(\equiv15.8^n\left(mod17\right)\) .

\(2^{3n+1}=8^n.2\left(mod17\right)\) .

\(\Rightarrow3.5^{2n+1}+2^{3n+1}\equiv15.8^n+2.8^n\left(mod17\right)\) .

\(=17.8^n\) chia hết cho 17 \(\forall\) so nguyên n.

13 tháng 6 2018

\(3\cdot5^{2n+1}+2^{3n+1}=3\cdot5^{2n}\cdot5+2^{3n}\cdot2=15\cdot25^n+8^n\cdot2\)

\(=\left(17-2\right)\cdot25^n+8^n\cdot2=17\cdot25^n-2\cdot25^n+8^n\cdot2=17\cdot25^n-2\left(25^n-8^n\right)\)

\(=17\cdot25^n-2\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)

\(=17\cdot25^n-34\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)

vì 17 chia hết cho 17 nên 17*25^n chia hết cho 17(1)

vì 34 chia hts cho 17 nên 34(25^n-1+25^n-2*8+25^n-3*8^2+...+8^n-1) chia hết cho 17

\(\Rightarrow17\cdot25^n-34\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)chia hết cho 17

\(\Rightarrow3\cdot5^{2n+1}+2^{3n+1}\)chia hết cho 17 (đpcm)