Cho tam giác abc vuông tại a có bc bằng 102cm hai cạnh góc vuông tỉ lệ với 8 và 15 . tính các cạnh góc vuông ab và ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử tam giác ABC vuông tại A(AC>AB)
ta có BC=102 cm
AC = (15.AB )/8
tam giác ABC vuông tại A(giả thiết)
=> AB2 + AC2 =BC2
(=) AB2 + 225/64 AB2 = 1022 = 10404
(=) 289 AB2 = 10404.64=665856
=> AB2 = 2304
=> AB = \(\sqrt{2304}=48\)
AC= 15/8 . 48 = 90 (cm)
#Học-tốt
Giả sử hai cạnh góc vuông cần tìm là a và b (cm) ( b>a>0)
Vì hai canh góc vuông tỉ lệ với 8 và 15 nên a:b=8:15
hay a/8=b/15=k (k>0)
suy ra a=8k, b = 15k (1)
vì tam giác vuông có cạnh huyền bằng 102 nên a^2 + b^2= 1022 (2)
từ (1) va (2) suy ra 64k2 + 225 k2 = 10404
289 k2 = 10404
k2=36
k=6
a=48 (cm), b = 90 (cm)
Đặt 2 cạnh góc vuông và cạnh huyên của tam giác lần lượt là \(a;b;c\left(a;b\ne0\right)\)
Vì các cạnh góc vuông của tam giác lần lượt tỉ lệ với 8 và 15 \(\Rightarrow\frac{a}{8}=\frac{b}{15}\Leftrightarrow\frac{a^2}{8^2}=\frac{b^2}{15^2}\)
Vì là tam giác vuông \(\Rightarrow a^2+b^2=c^2\) ( ĐL Pytago ) . Áp dụng t/c dãy tỉ số bằng nhau
Ta có : \(\frac{a^2}{8^2}=\frac{b^2}{15^2}=\frac{a^2+b^2}{8^2+15^2}=\frac{c^2}{64+225}=\frac{10404}{289}=36\)
Vì \(\frac{a^2}{8^2}=36\Rightarrow\sqrt{\frac{a^2}{8^2}}=\sqrt{36}\Rightarrow\frac{a}{8}=6\Leftrightarrow a=6.8=48\)
Vì \(\frac{b^2}{15^2}=36\Rightarrow\sqrt{\frac{b^2}{15^2}}=\sqrt{36}\Rightarrow\frac{b}{15}=6\Leftrightarrow b=15.6=90\)
Vậy độ dài hai cạnh góc vuông của tam giác lần lượt là 48 và 90
Bài 3:
Gọi độ dài hai cạnh góc vuông lần lượt là a,b
Theo đề, ta có: a/8=b/15
Đặt a/8=b/15=k
=>a=8k; b=15k
Ta có: \(a^2+b^2=51^2\)
\(\Leftrightarrow289k^2=2601\)
=>k=3
=>a=24; b=45
Bài 6:
Xét ΔABC có \(10^2=8^2+6^2\)
nên ΔABC vuông tại A
Refer:
2,
Ta có:AH là đường cao ΔABC
⇒AH ⊥ BC tại H
⇒∠AHB=∠AHC=90°
⇒ΔAHB và ΔAHC là Δvuông H
Xét ΔAHB vuông H có:
AH² + HB²=AB²(Py)
⇔24² + HB²=25²
⇔ HB²=25² - 24²
⇔ HB²=49
⇒ HB=7(đvđd)
Chứng minh tương tự:HC=10(đvđd)
Ta có:BC=BH + CH=7 + 10=17(đvđd)
a: Đặt \(\dfrac{AB}{5}=\dfrac{AC}{12}=k\)
=>AB=5k; AC=12k
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(25k^2+144k^2=26^2\)
=>\(k^2=4\)
=>k=2
=>AB=10cm; AC=24cm
b: Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{BCD}+\widehat{ADC}=360^0\)
=>\(\widehat{BCD}+\widehat{ADC}=360^0-70^0=290^0\)
=>\(2\cdot\left(\widehat{ODC}+\widehat{OCD}\right)=290^0\)
=>\(\widehat{OCD}+\widehat{ODC}=145^0\)
Xét ΔOCD có \(\widehat{COD}+\widehat{OCD}+\widehat{ODC}=180^0\)
=>\(\widehat{COD}=180^0-145^0=35^0\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{8}{15}\)(gt)
nên \(AB=\dfrac{8}{15}\cdot AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\left(\dfrac{8}{15}\cdot AC\right)^2+AC^2=102^2\)
\(\Leftrightarrow\dfrac{64}{225}AC^2+AC^2=102^2\)
\(\Leftrightarrow\dfrac{289}{225}AC^2=102^2\)
\(\Leftrightarrow AC^2=102^2:\dfrac{289}{225}=8100\)
hay AC=90(cm)
Ta có: \(AB=AC\cdot\dfrac{8}{15}\)(cmt)
nên \(AB=90\cdot\dfrac{8}{15}=48\left(cm\right)\)
Vậy: AC=90cm; AB=48cm
Áp dụng định lý pytago vào tam giác ABC ta có: \(AB^2+AC^2=BC^2=102^2=10404\)
Theo bài ra ta có: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{10404}{289}=36\)
\(\Rightarrow\frac{AB^2}{64}=36\Rightarrow AB^2=2304\Rightarrow AB=48\left(cm\right)\left(AB>0\right)\)
\(\frac{AC^2}{225}=36\Rightarrow AC^2=8100\Rightarrow AC=90\left(cm\right)\left(AC>0\right)\)
Vậy AB = 48cm, AC = 90cm