Cho mình hỏi viết theo chiều ngược lại của hàm đẳng thức là j vậy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
function s1(s:string):string;
var d,i:integer;
s2:string;
begin
d:=length(s);
s2:=#32;
for i:=d downto 1 do
s2:=s2+s[i];
s1:=s2;
end;
để s2 có cùng độ dài với s thì nên gán s2 ban đầu là s2=''
Trong toán học, bất đẳng thức AM-GM là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Tên gọi đúng của bất đẳng thức này là bất đẳng thức AM-GM. Bất đẳng thức AM-GM là một bất đẳng thức cơ bản kinh điển quan trọng nhất của toán học sơ cấp, vì nó đã có khá nhiều cách chứng minh được đưa ra, hàng chục mở rộng, hàng chục kết quả chặt hơn đăng trên các diễn đàn toán học. Phần này tôi xin giới thiệu một kết quả chặt hơn bất đẳng thức AM-GM khác được suy ra từ chính cách chứng minh mới bất đẳng thức AM-GM (Cauchy - Cô-si).
# Aeri #
Gọi số cần tìm là ab (a khác 0; a,b < 10)
ta có:ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
mà 1\(\le\) a<10
0\(\le\) b<10
=> 1\(\le\) a+b<20
=>a+b=11
ta có bảng sau:
\(<table border="1" cellspacing="1" cellpadding="1" style="width:500px"><tbody><tr><td>a</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td></tr><tr><td>b</td><td>9</td><td>8</td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td><td>2</td></tr></tbody></table>\)
=> có 8 số thỏa mãn đề a
Đúng là bổ ích thiệt, các bạn đọc thử "80 ngày vòng quanh thế giới" cũng có liên quan đó!
x^2 + y^2 = (x + y +\(\sqrt{2xy}\))(x + y - \(\sqrt{2xy}\))