tìm x
a , \(2.3^{x+2}+4.3^{x+1}=3^6.10\)
b, \(\left(\frac{1}{3}+\frac{1}{6}\right).2^{x+4}-2^x=2^{13}-2^{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{1}{2}-\frac{1}{3}\right).6^x+6^{x+2}=6^{15}+6^{18}\)
\(\frac{1}{6}.6^x+6^{x+2}=6^{15}\left(1+6^3\right)\)
\(\frac{1}{6}.6^x\left(1+6^3\right)=6^{15}.217\)
\(6^{x-1}.217=6^{15}.217\)
\(6^{x-1}=6^{15}\)
\(x-1=15\)
\(x=16\)
b) \(\left(\frac{1}{2}-\frac{1}{6}\right).3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
\(\frac{1}{3}.3^x.4\left(3^4-1\right)=3^{13}.4\left(3^3-1\right)\)
\(3^x.4.\left(3^3-1\right)=3^{13}.4.\left(3^3-1\right)\)
\(3^x=3^{13}\)
\(x=13\)
\(\left(\frac{1}{2}-\frac{1}{6}\right).\left(3^x.3^4\right)-4.3^x=3^{16}-4.3^{13}\)
=> \(\frac{1}{3}.3^x.3^4-4.3^x=3^{16}-4.3^{13}\)
=> \(3^x.3^4-4.3^x=\left(3^{16}-4.3^{13}\right):\frac{1}{3}\)
=> \(3^x.3^4-4.3^x=-386339074,3\)
=> \(3^x.\left(3^4-4\right)=-386339074,3\)
=> \(3^x.77=-386339074,3\)
=> \(3^x=-386339074,3:77\)
=> \(3^x=-5017390,575\)
=> x = ... chắc tự ngồi tính đc
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(5^{x+3}\left(5-3\right)=2.5^{11}\)
\(5^{x+3}.2=2.5^{11}\)
\(5^{x+3}=5^{11}\)
\(x+3=11\)
\(x=8\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)
\(4^{x+1}.13=13.4^{11}\)
\(4^{x+1}=4^{11}\)
\(x+1=11\)
\(x=10\)
a, \(\left(\frac{1}{2}-\frac{1}{3}\right)\cdot6^x+6^{x+2}=6^{10}+6^7\)
\(\Leftrightarrow\frac{1}{6}\cdot6^x+6^x\cdot6^2=6^{10}+6^7\)
\(\Leftrightarrow6^{x-1}\left(1+6^3\right)=6^7\left(6^3+1\right)\)
\(\Leftrightarrow6^{x-1}=6^7\Leftrightarrow x-1=7\)
\(\Leftrightarrow x=8\)
b, \(\left(\frac{1}{2}-\frac{1}{6}\right)\cdot3^{x+4}-4\cdot3^x=3^{16}-4\cdot3^{13}\)
\(\Leftrightarrow\frac{1}{3}\cdot3^{x+4}-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\cdot3^3-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x=3^{13}\Leftrightarrow x=13\)
a. x=8
b. x=13
còn cách tính thì mình quên rồi vì minh học cái này lâu lắm rồi ko nhớ đc.
a, => 2^x = (2^3)^4/(2^4)^3 = 2^12/2^12 = 1 = 2^0
=> x = 0
c, => 4^x = 4^10.(4-3) = 4^10
=> x=10
d, => 2^2.3^x-1 + 2.3^x.9 = 2^2.3^6+2.3^9
=> 2.3^x-1 . (2+3.9) = 2.3^6.(2+3^3)
=> 2.3^x-1 . 27 = 2.3^6 . 27
=> 3^x-1 = 3^6
=> x-1 = 6
=> x = 7
e, => 2^x.(1/3+1/6+2) = 2^11.(2+1/2)
=> 2^x. 5/2 = 2^11. 5/2
=> 2^x = 2^11
=> x = 11
Tk mk nha
a.\(\frac{1}{6}.6^x+6^x.36=6^{15}\left(1+6^3\right)\)
\(6^x.\frac{217}{6}=6^{15}.217\)
\(6^x=6^{16}\)
\(x=16\)
a) \(\Leftrightarrow2.\left(\frac{2.3^x}{3}+3^x.3^2\right)=2.3^6\left(2+3^3\right)\)
\(\Leftrightarrow2.\left(\frac{2.3^x+3.3^x.3^2}{3}\right)=2.3^6.29\)
\(\Leftrightarrow2.\left[\frac{3^x.\left(2+3.3^2\right)}{3}\right]=2.3^6.19\)
\(\Leftrightarrow2.3^{x-1}.29=2.3^6.29\Leftrightarrow3^{x-1}.29=\frac{2.3^6.29}{2}=3^6.29\Leftrightarrow3^{x-1}=\frac{3^6.29}{29}=3^6\)
\(\Leftrightarrow3^{x-1}=3^6\Leftrightarrow x-1=6\Leftrightarrow x=6+1=7\)
vậy x=7 . Chọn mình nha
mấy bài sao tương tự nếu ko biết thì nhắn tin mình chỉ típ nha
a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)
\(\Rightarrow x+3=-3\)
\(\Rightarrow x=-6\)
b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)
\(\Rightarrow2x+2=-2\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)
\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)
\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)
\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}+\dfrac{5}{48}=\dfrac{6}{48}=\dfrac{1}{8}\)
\(\Leftrightarrow-\dfrac{1}{12}< x< \dfrac{1}{8}\)
=>x=0
c: \(\Leftrightarrow x=\dfrac{-1}{2}\cdot\dfrac{1}{4}=\dfrac{-1}{8}\)
d: \(\Leftrightarrow x^8=x^7\)
=>x(x-1)=0
=>x=0(loại) hoặc x=1(nhận)
e: \(\Leftrightarrow3^x=\dfrac{3^{10}}{3^9}=3\)
hay x=1
f: =>x-1=20
hay x=21
a, Ta có \(2.3^{x+2}+4.3^{x+1}=3^6.10\)
\(\Rightarrow2.3.3^{x+1}+4.3^{x+1}=3^6.10\)
\(\Rightarrow3^{x+1}.\left(6+4\right)=3^6.10\)
\(\Rightarrow3^{x+1}.10=3^6.10\)
\(\Rightarrow3^{x+1}=3^6\)
\(\Rightarrow x+1=6\)
\(\Rightarrow x=5\)
b,\(\left(\frac{1}{3}+\frac{1}{6}\right).2^{x+4}-2^x=2^{13}-2^{16}\)
\(\Rightarrow\frac{1}{2}.2^{x+4}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^{x+3}-2^x=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=2^{13}.\left(1-2^3\right)\)
\(\Rightarrow2^x.\left(2^3-1\right)=-2^{13}.\left(2^3-1\right)\)
\(\Rightarrow2^x=2^{-13}\)
\(\Rightarrow x=-13\)
A ) 2 . 3x+2 + 4 . 33+1 = 36 . 10
2 . 3x . 9 + 4 . 3x . 3 = 729 .10
18 . 3x + 12 . 3x = 243 . 3 . 10
30 . 3x = 243 . 30
3x = 243
x = 5