K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

A=1/11+1/12+1/13+...+1/20

>1/20+1/20+1/20+...+1/20(10 phân số)

    =1/20x10=1/2 

vậy A=1/2(đpcm)

b) A=1/11+1/12+1/13+...+1/20

< 1/11+1/11+1/11+...+1/11(10 phân số)

   =1/11x1=10/11<11/11=1

vậy A<1(đpcm)

8 tháng 6 2017

\(\frac{a}{b}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}+\frac{1}{12}\)

\(\frac{a}{b}=\left(1+\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{11}\right)+...+\left(\frac{1}{6}+\frac{1}{7}\right)\)

\(\frac{a}{b}=\frac{13}{1.2}+\frac{13}{2.11}+...+\frac{13}{6.7}\)

chọn mẫu chung

Thừa số phụ tương ứng k1,k2,k3,...,k6 ( 6 phân số )

\(\frac{a}{b}=\frac{13k_1}{1.2.3...12}+\frac{13k_2}{1.2.3...12}+...+\frac{13k_6}{1.2.3...12}\)

\(\frac{a}{b}=\frac{13.\left(k_1+k_2+k_3+...+k_6\right)}{1.2.3...12}\)

Vì tử số \(⋮\)13. Mẫu không chứa thừa số nguyên tố là 13

nên khi rút gọn phân số \(\frac{a}{b}\) và phân số tối giản thì a \(⋮\)13

5 tháng 11 2017

Ta có :

n2 + n + 1 = n . ( n + 1 ) + 1

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên n . (  n + 1 ) + 1 là một số lẻ nên không chia hết cho 4

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0

hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5

P/s đùng để ý đến câu trả lời của mình

https://olm.vn/hoi-dap/detail/54833154236.html

2 tháng 4 2017

1/11 + 1/12 +..+ 1/40 = (1/11 + 1/12 +... 1/20 ) + ( 1/21 + 1/22 +...+ 1/40) < (1/11 + 1/11 + .. [ 10 số hạng 1/11 ] .. + 1/11) + (1/21 + 1/21 +..[20 số hạng]..+ 1/21 < 1/11 . 10 + 1/21 . 20 < 10/11 + 20/21 <2 
Đề bài đc Chứng minh

14 tháng 3 2018

\(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{70}\)

\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)\)

\(+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)

\(\Rightarrow A< \frac{1}{10}\cdot10+\frac{1}{20}\cdot10+\frac{1}{30}\cdot10+...+\frac{1}{60}\cdot10\)

\(A< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{6}\)

\(A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\left(\frac{1}{4}+\frac{1}{5}\right)\)

\(A< 2+0,45< 2,5\)

14 tháng 3 2018

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)

\(A>\left(\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\right)+\left(\frac{1}{30}+...+\frac{1}{30}\right)+...+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)\)

\(A>\frac{1}{2}+\frac{1}{3}+..+\frac{1}{7}\)

\(A>\frac{223}{140}>\frac{4}{3}\)

29 tháng 4 2017

C>1   vì c>1

29 tháng 4 2017

a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)

Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)

\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)

Vậy A > 1/2

b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

Vậy B > 1/2

c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)

Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)

Vậy C > 1