tìm nguyện nguyên của phương trình 3x+5xy=6y+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
\(2x^2+2y^2+3x-6y=5xy-7\)
\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)
\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)
\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)
\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)
vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)
Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7
Tới đây bạn tự làm nhé
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Khi đó, để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng pt tích đơn giản. Bạn chỉ cần xét các TH thôi với $t+7y+2>0$ và $t+7y+2, t-7y-2$ có cùng tính chẵn lẻ.
Cho 3x + 5xy = 6y + 5 = 0
Chuyển vế rồi tính