Với n là một số tự nhiên khác 0 thì \(n^2+n+1\) là số chẵn hay lẻ và \(n^2+n+1\) có thể là một chính phương hay không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
Là số lẻ.
nếu n là số lẻ thì \(n^2\) là số lẻ + n thì thành số chẵn (lẻ + lẻ = chẵn) + 1 nữa là thành số lẻ
nếu n là số chẵn thì \(n^2\) là số chẵn + n thì thành số chẵn (chẵn + chẵn = chẵn) + 1 nữa là thành số lẻ
Nhớ thích nha, làm ơn
À lộn n+m = số chẵn mà nếu số đó cộng nó nhân hai bằng n còn nếu nó trừ nó nhân ba bằng m
Ta thấy \(a+b=\left(5m+n+1\right)+\left(3m-n+1\right)=8m+2\) là số chẵn nên hai số \(a,b\) cùng tính chẵn lẻ.
Tích hai số này có thể chẵn có thể lẻ, tuỳ thuộc vào tính chẵn lẻ của m,n. Nếu \(m,n\) cùng tính chẵn lẻ, thì \(5m+n,3m-n\) là số chẵn do đó cả hai số \(a,b\) lẻ. Suy ra \(ab\) lẻ. Nếu \(m,n\) khác tính chẵn lẻ thì \(5m+n,3m-n\) là số lẻ do đó cả hai số \(a,b\) chẵn. Suy ra \(ab\) là số chẵn.
\(A=n^2+n+1=n\left(n+1\right)+1\)
Vì n;n+1 là hai só liên tiếp
nên n(n+1) chia hết cho 2
=>A=n(n+1)+1 chia 2 dư 1
=>A là số lẻ
Ta có:
n2 là số chính phương
Mà n khác 0
\(\Rightarrow\)Có 2 trường hợp:
TH1: n là số chẵn
Ví dụ: n = 2
\(\Rightarrow n^2+n+1=2^2+2+1=4+2+1=7\)
Mà 7 không có số nào mũ 2 bằng
\(\Rightarrow n^2+n+1\)là số lẻ và \(n^2+n+1\)không thể là số chính phương
TH2:
n là số lẻ
Ví dụ: n = 3
\(\Rightarrow n^2+n+1=3^2+3+1=9+3+1=13\)
Mà 13 không có số nào mũ 2 bằng cả
\(\Rightarrow n^2+n+1\)là số lẻ và không thể là số chính phương
Qua 2 trường hợp trên, ta kết luận: với n là số tự nhiên khác 0 thì \(n^2+n+1\)là số lẻ và không thể là số chính phương