Cho tan giác ABC có góc A = 150 độ . AD là đường phân giác ( D thuộc BC ) . CM : 1/AB + 1/AC = 1/AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy ΔDEF đều
b) Vì AD là tia phân giác của ∠BAC (gt)
⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o
Vì AD//MC (gt)
⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)
∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)
Xét ΔAMC có:
Hai góc bằng nhau và bằng 60o
⇒ ΔAMC đều
Vậy ΔAMC đều
Còn lại bạn tự làm nhé
a) Trong tam giác ABC có AB<AC
=>góc ACB< góc ABC
Có tam giác ABH vuông tại H
=>HAB+ABH=90 độ )
=>60 độ+ABH=90 độ
ABH=30 độ
b) AD là tia phân giác của góc A
=>EAI= IAB=60độ:2= 30 độ
Xét tam giác vuông BHA và tam giác vuông AIB có
Cạnh huyền AB chung
ABH=IAB=30 độ
=> tam giác AIB=tam giác BHA ( cạnh huyền- góc nhọn)
c) Xét tam giác vuông AIE và tam giác vuông AIB có
Cạnh AI chung
EAI=IAB=30 độ
=> tam giác AIE= tam giác AIB ( cạnh huyền- góc nhọn)
=>AE=AB ( 2 cạnh tương ứng)
=> Tam giác ABE là tam giác cân và có EAB=60 độ
=> Tam giác ABE là tam giác đều
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có
AB=AE
EAD=DAB=30 độ
Cạnh AD chung
=> tam giác ADB= tam giác ADC (c.g.c)
=> DB=DE (1) và góc ABD=góc AED
do đó CBx=CED( cùng kề bù với 2 góc bằng nhau)
CBx>góc C ( CBx là góc ngoài của tam giác ABC)
=> CED>C, do đó DC>DE (2)
Từ (1) và (2) =>DC>DB
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13cm
Ta có: ΔABC vuông tại A
nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC
hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)
Bài 2:
Ta có: ABCD là hình thang cân
nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)
hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé