K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

undefined

Vậy ΔDEF đều

b) Vì AD là tia phân giác của ∠BAC (gt)

⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o

Vì AD//MC (gt)

⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)

∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)

Xét ΔAMC có:

Hai góc bằng nhau và bằng 60o 

⇒ ΔAMC đều

Vậy ΔAMC đều

Còn lại bạn tự làm nhé

3 tháng 4 2017

a) Trong tam giác ABC có AB<AC

=>góc ACB< góc ABC

Có tam giác ABH vuông tại H

=>HAB+ABH=90 độ )

=>60 độ+ABH=90 độ

ABH=30 độ

b) AD là tia phân giác của góc A

=>EAI= IAB=60độ:2= 30 độ

Xét tam giác vuông BHA và tam giác vuông AIB có

Cạnh huyền AB chung

ABH=IAB=30 độ

=> tam giác AIB=tam giác BHA ( cạnh huyền- góc nhọn)

c) Xét tam giác vuông AIE và tam giác vuông AIB có

Cạnh AI chung

EAI=IAB=30 độ

=> tam giác AIE= tam giác AIB ( cạnh huyền- góc nhọn)

=>AE=AB ( 2 cạnh tương ứng)

=> Tam giác ABE là tam giác cân và có EAB=60 độ

=> Tam giác ABE là tam giác đều

d) Gọi Bx là tia đối của tia BA

Xét tam giác ADB và tam giác ADC có

AB=AE

EAD=DAB=30 độ

Cạnh AD chung

=> tam giác ADB= tam giác ADC (c.g.c)

=> DB=DE (1) và góc ABD=góc AED

do đó CBx=CED( cùng kề bù với 2 góc bằng nhau)

CBx>góc C ( CBx là góc ngoài của tam giác ABC)

=> CED>C, do đó DC>DE (2)

Từ (1) và (2) =>DC>DB

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13cm

Ta có: ΔABC vuông tại A

nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC

hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)

Bài 2: 

Ta có: ABCD là hình thang cân

nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)

hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)

23 tháng 3 2021

undefined

18 tháng 4 2021

bạn nào có lời giải bài này thì cho mk xin vs ạ :<

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

Bài 1: 

AB=5cm

=>AC=5cm

=>BC=23-10=13(cm)