Tính nhanh :A=\(\frac{2}{3}\)+\(\frac{2}{6}\)+\(\frac{2}{12}\)+\(\frac{2}{24}\)+\(\frac{2}{48}\)+\(\frac{2}{96}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt bt bằng A
Ta có 2A= 2(2/3 + 2/6 + 2/12 +2/24 + 2/48 + 2/96 + 2/192)
2A= 4/3 +2/3 + 2/6 + 2/12 + 2/24 + 2/48 + 2/96
A= 2A-A= (4/3 +2/3 + 2/6 + 2/12 + 2/24 + 2/48 + 2/96) - (2/3 + 2/6 + 2/12 +2/24 + 2/48 + 2/96 2/192)
A=4/3 +2/3 + 2/6 + 2/12 + 2/24 + 2/48 + 2/96 - 2/3 - 2/6 - 2/12 - 2/24 - 2/48 - 2/96 - 2/192
A=(2/3 - 2/3) + (2/6 - 2/6) + ( 2/12 - 2/12) + (2/24 - 2/24) + (2/48 - 2/48) + ( 2/96 - 2/96) + (4/3 - 2/192)
A=0+0+0+0+0+0+ (256/192 - 2/192)
A=254/192
A=127/96(rút gọn phân số)
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{192}\)
\(=2\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{192}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{192}\right)\)
\(=2\times\left(1-\frac{1}{192}\right)\)
\(=2\times\frac{191}{192}\)
\(=\frac{382}{192}=\frac{191}{96}\)
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}.\)
\(=2\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{192}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{192}\right)\)
\(=2\times\left(1-\frac{1}{192}\right)\)
\(=2\times\frac{191}{192}=\frac{191}{68}\)
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}\)
\(=\frac{1}{3.1}+\frac{1}{3.2}+\frac{1}{3.2^2}+...+\frac{1}{3.2^6}\)
\(=\frac{1}{3}.\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(=\frac{1}{3}.A\)với \(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)
\(\Rightarrow2A=2.\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(\Rightarrow2A=2+\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2^5}\)
\(\Rightarrow2A-A=\left(2+\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2^5}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(\Rightarrow A=2-\frac{1}{2^6}=2-\frac{1}{64}=\frac{127}{64}\)
\(\Rightarrow\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}=\frac{1}{3}.\frac{127}{64}=\frac{127}{192}\)
Câu 1
Ta có \(\frac{119x83-183}{120x83-266}=\frac{119x83-183}{119x83+83-266}=\frac{119x83-183}{119x83-183}=1\)
Ta thấy tất cả các phân số đều có mẫu chung là 192
=> \(\frac{128+64+32+16+8+4+2}{192}\)
= \(\frac{254}{192}\)= \(\frac{127}{96}\)
\(C=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(2C=\frac{4}{3}+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}\)
\(2C-C=\frac{4}{3}-\frac{2}{192}\)
\(C=\frac{127}{96}\)
\(C=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(C=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
\(C=\frac{254}{192}=\frac{127}{96}\)
\(C=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(C=\frac{2}{3}+\frac{2}{3.2}+\frac{2}{3.4}+\frac{2}{3.8}+\frac{2}{3.16}+\frac{2}{3.32}+\frac{2}{3.64}\)
\(C=1-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{8}+...+\frac{2}{64}\)
\(C=1-\frac{2}{64}\)
\(C=\frac{31}{32}\)
Làm mò, không biết đúng không nữa?
cái a bằng 1962
cái b bằng 127/192
à quên mình chưa rút gọn phân số đấy đâu bạn ạ
ban rút gọn phân số đấy hộ mình nha
2/3+ 2/6+ 2/12+ 2/24+ 2/48+ 2/192= 2/3+ 1/3+ 1/6+1/12+1/24+1/96
=64/96+32/96+16/96+8/96+4/96+1/96
=125/96
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}\)+\(\frac{2}{96}\)
=\(2\)x (\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}\)\(+\frac{1}{96}\))
=\(2\)x (\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+...\)\(+\frac{1}{48}-\frac{1}{96}\))
=\(2\)x (\(1-\frac{1}{96}\))
=\(2\)x \(\frac{95}{96}\)
=\(\frac{190}{96}=\frac{95}{48}\)