B=1/10+1/15+1/21+...+1/120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(\Rightarrow B=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(\Rightarrow B=2.\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{4}-\frac{1}{16}\right)=2.\frac{3}{16}=\frac{3}{8}\)
Vậy \(B=\frac{3}{8}\)
nha m.n
\(B=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+.....+\frac{1}{120}\)
\(B=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+.....+\frac{1}{240}\right)\)
\(B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{15.16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+......+\frac{1}{15}-\frac{1}{16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(B=2.\frac{3}{16}\)
\(B=\frac{3}{8}\)
Vậy \(B=\frac{3}{8}\)
1/10+1/15+1/21+...+1/120
=2*(1/20+1/30+1/42+...+1/240)
=2*(1/4*5+1/5*6+...+1/15*16)
=2*(1/4-1/5+1/5-1/6+...+1/15-1/16)
=2*[(1/4-1/16)+(1/5-1.5)+...+(1/15-1/15)]
=2[(4/16-1/16)+0+...+0]]
=2*3/16=3/8
\(S=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
\(S=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+....+\frac{2}{240}\)
\(2S=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+....+\frac{1}{240}\)
\(2S=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{15.16}\)
\(2S=\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+.....+\left(\frac{1}{15}-\frac{1}{16}\right)\)
\(2S=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{15}-\frac{1}{16}\)
\(2S=\frac{1}{4}-\frac{1}{16}\)
\(2S=\frac{3}{16}\)
\(S=\frac{3}{8}\)
Đặt A = \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
=> A = \(2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+....+\frac{1}{240}\right)\)
= \(2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{15.16}\right)\)
= \(2\left(\frac{1}{4}-\frac{1}{16}\right)=2\left(\frac{4}{16}-\frac{1}{16}\right)=2.\frac{3}{16}=\frac{3}{8}\)
Đặt A=1/10+1/15+1/21+...+1/120
1/2 A=1/20+1/30+1/42+...+1/240
A=1/4-1/5+1/5-1/6+1/6-1/7+...+1/15-1/16
A=1/4-1/16
A=3/16
Vậy:1/10+1/15+1/21+...+1/120=3/16
\(C=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}=2\times\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(C=2\times\left(\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+...+\frac{1}{15\times16}\right)\)
\(C=2\times\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)=2\times\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{3}{8}\)
Ta có: \(B=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(\Rightarrow B=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(\Rightarrow B=2.\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(\Rightarrow B=2.\frac{3}{16}\)
\(\Rightarrow B=\frac{3}{8}\)
Vậy \(B=\frac{3}{8}\)
C=220 +230 +242 +...+2240 =2×(120 +130 +142 +...+1240 )
C=2×(14×5 +15×6 +16×7 +...+115×16 )
\(\frac{1}{2}B=\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\)
\(\frac{1}{2}B=\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\)
\(\frac{1}{2}B=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\)
\(\frac{1}{2}B=\frac{1}{4}-\frac{1}{16}=\frac{3}{16}\Rightarrow B=\frac{3}{16}:\frac{1}{2}=\frac{3}{8}\)
\(B=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(B=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)
\(B=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(B=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(B=2.\frac{3}{16}=\frac{6}{16}=\frac{3}{8}\)