\(Cho\)\(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)
\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)
a)Rút gọn 2 đa thức trên
b)Tìm gtln của A
c)B+3A+112 có phải là số chính phương hay không? Vì sao.\(\left(x\in Z\right)\)
d)tìm \(x\in Z\)để \(B-3x^2+41\)là số chính phương
\(a)\) \(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)
\(A=x^4-x-x^4-x^2-5x+5\)
\(A=-x^2-6x+5\)
Vậy \(A=-x^2-6x+5\)
\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)
\(B=4x^2+8x-8x-32-4\)
\(B=4x^2-36\)
Vậy \(B=4x^2-36\)
\(b)\) Ta có :
\(A=-x^2-6x+5\)
\(-A=x^2+6x-5\)
\(-A=\left(x^2+6x+9\right)-14\)
\(-A=\left(x+3\right)^2-14\ge-14\)
\(A=-\left(x+3\right)^2+14\le14\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+3\right)^2=0\)
\(\Leftrightarrow\)\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy GTLN của \(A\) là \(14\) khi \(x=-3\)
Chúc bạn học tốt ~