\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{x}+2}\right).\frac{x-4}{\sqrt{4x}}\)
Tìm ĐKXĐ và rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:\hept{\begin{cases}x-4\ne0\\3-\sqrt{x}\ne0\\x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne4\\\sqrt{x}\ne3\\x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne4\\x\ne9\\x\ge0\end{cases}}\)
Rút gọn
\(D=\left(\frac{x-2\sqrt{x}}{x-4}-1\right):\left(\frac{4-x}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(D=\left(\frac{x-2\sqrt{x}}{x-4}-\frac{x-4}{x-4}\right):\left(\frac{4-x}{x+2\sqrt{x}-3\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(D=\left(\frac{x-2\sqrt{x}-x+4}{x-4}\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x-\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x-\left(x+4\sqrt{x}+4\right)-\left(x-6\sqrt{x}+9\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{4-x-x^2-4\sqrt{x}-4-x^2+6\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\left(\frac{-2\sqrt{x}+4}{x-4}\right):\left(\frac{-2x^2-x-2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\right)\)
\(D=\frac{\left(-2\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(x-4\right)\left(-2x^2-x-2\sqrt{x}-9\right)}\)
\(D=\frac{\left(-2\right)\left(\sqrt{x}-3\right)\left(x^2-4\right)}{\left(x-4\right)\left(-2x^2-x-2\sqrt{x}-9\right)}\)
Sai thui nhé !!!!
\(D=\left(\frac{x-2\sqrt{x}}{x-4}-1\right):\left(\frac{4}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-1\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
ĐKXĐ:
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
\(\sqrt{x}-3\ne0\Rightarrow\sqrt{x}\ne3\Rightarrow x\ne9\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(D=\left(\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-1\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+2}-1\right):\left(\frac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}+2}:\frac{4-x+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)-(\sqrt{x}-3)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{-2}{\sqrt{x}+2}:\frac{4-x+x-4-x+\sqrt{x}+6}{(\sqrt{x}-3)\left(\sqrt{x}+2\right)}\)
\(=\frac{-2}{\sqrt{x}+2}:\frac{-x+\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{-2}{\sqrt{x}+2}.\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{2}{\sqrt{x}+2}\)
ĐKXĐ: \(\hept{\begin{cases}\sqrt{x}\ne2\\x\ne4\end{cases}\Rightarrow x\ne4}\)
\(P=\left[\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right).\left(\sqrt{x+2}\right)}\right]:\frac{2.\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x+2}\right)}\)
\(P=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-2\right).\left(\sqrt{x+2}\right)}\cdot\frac{\left(\sqrt{x}-2\right).\left(\sqrt{x+2}\right)}{2\sqrt{x}+4}=\frac{2\sqrt{x}-2}{2\sqrt{x}+4}\)
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2'x-1'}{\sqrt{x}-1}\)
Rút gọn ta được:
\(P=\frac{x^1-\sqrt{x}}{x+\sqrt{x}+1}-\frac{1x+\sqrt{x}}{\sqrt{x}}+\frac{1'x-1'}{\sqrt{x}-1}\)
Phần \(\frac{2'x-1'}{\sqrt{x-1}}\) rút gọi được phần 2 thôi
Đề không yêu cầu Giải Phương trình nhé :v
P/s: Có chắc không nhỉ ?
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\\x\ne4\end{cases}}\)
\(P=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(\Leftrightarrow P=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(\Leftrightarrow P=\frac{4x\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow P=\frac{4x}{\sqrt{x}-3}\)
b) Để P < 0
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-3< 0\Leftrightarrow4x>0\\\sqrt{x}-3>0\Leftrightarrow4x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}< 3\Leftrightarrow x>0\\\sqrt{x}>3\Leftrightarrow x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x< 9\Leftrightarrow x>0\left(ktm\right)\\x>9\Leftrightarrow x< 0\left(ktm\right)\end{cases}}\)
Vậy để \(P< 0\Leftrightarrow x\in\varnothing\)
Để P > 0
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-3>0\Leftrightarrow4x>0\\\sqrt{x}-3< 0\Leftrightarrow4x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}>3\Leftrightarrow x>0\left(tm\right)\\\sqrt{x}< 3\Leftrightarrow x< 0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x>9\Leftrightarrow x>0\left(tm\right)\)
Vậy để \(P>0\Leftrightarrow x>9\)
c) Để \(\left|P\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}P=1\left(tm\right)\\P=-1\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\frac{4x}{\sqrt{x}-3}=1\)
\(\Leftrightarrow4x=\sqrt{x}-3\)
\(\Leftrightarrow4x-\sqrt{x}+3=0\)
\(\Leftrightarrow\left(2\sqrt{x}-\frac{1}{4}\right)^2+\frac{47}{48}=0\left(ktm\right)\)
Vậy để \(\left|P\right|=1\Leftrightarrow x\in\varnothing\)
a) ĐKXĐ : \(0\le x\ne4\)
b) \(A=\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{4\sqrt{x}-1}{x-4}\right):\frac{1}{x-4}\)
\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\left(x-4\right)\)
\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
\(=\frac{-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=-1\)
\(A=\left[\frac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{x-4}\right]:\frac{1}{x-4}\)
\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{x-4}.\left(x-4\right)\)=\(=\frac{-1}{x-4}.\left(x-4\right)=-1\)
Vậy giá trị của A thỏa mãn mọi x và rút gọn lại còn -1
a, \(P=\left(\frac{x\sqrt{x}}{\sqrt{x}+1}+\frac{x^2}{x\sqrt{x}+1}\right)\left(2-\frac{1}{\sqrt{x}}\right)\)ĐK : \(x\ge0;\sqrt{x}+1>0\)
\(=\left(\frac{x\sqrt{x}\left(x-\sqrt{x}+1\right)+x^2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{2\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\left(\frac{x^2\sqrt{x}-x^2+x\sqrt{x}+x^2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{2\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\left(\frac{x\sqrt{x}\left(x+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\left(\frac{2\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\frac{x\left(x+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
b, \(P=0\Rightarrow\frac{x\left(x+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=0\Leftrightarrow x\left(x+1\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=0;x=-1;x=\frac{1}{4}\)Kết hợp với đk vậy \(x=0;x=\frac{1}{4}\)
dk , x lơn hơn hoặc = 0 , x khác 4
\(\frac{\sqrt{x}}{\sqrt{x-2}}\times\frac{x-4}{2\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x+2}}\times\frac{x-4}{2\sqrt{x}}.\)
có \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)\)
\(\frac{\sqrt{x}}{\sqrt{x}-2}\times\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)
rút gọn
\(\frac{\left(\sqrt{x}+2\right)}{2}+\frac{\left(\sqrt{x}-2\right)}{2}\)
\(\frac{2\sqrt{x}}{2}\)