\(M=\frac{1}{2^2}+...+\frac{1}{1990^2}\)
C/M : M < \(\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(m+n+q\right)^2=m^2+n^2+q^2\)
<=>\(m^2+n^2+q^2+2\left(mn+nq+qm\right)=m^2+n^2+q^2\)
<=>\(mn+nq+qm=0\)
<=>\(\frac{mn+nq+qm}{mnq}=0\)
<=>\(\frac{mn}{mnq}+\frac{nq}{mnq}+\frac{qm}{mnq}=0\)
<=>\(\frac{1}{q}+\frac{1}{m}+\frac{1}{n}=0\)
<=>\(\frac{1}{m}+\frac{1}{n}=-\frac{1}{q}\)
<=>\(\left(\frac{1}{m}+\frac{1}{n}\right)^3=\left(-\frac{1}{q}\right)^3\)
<=>\(\frac{1}{m^3}+\frac{3}{mn}\left(\frac{1}{m}+\frac{1}{n}\right)+\frac{1}{n^3}=-\frac{1}{q^3}\)
<=>\(\frac{1}{m^3}+\frac{1}{n^3}+\frac{1}{q^3}=-\frac{3}{mn}\cdot\left(-\frac{1}{q}\right)=\frac{3}{mnq}\) (đpcm)
1/ Trước hết ta chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng :
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\) (đpcm)
Với mọi \(n\ge2\)
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=2\left(\sqrt{n+1}-\sqrt{n}\right)\) (1)
Lại có : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\)
\(=2\left(\sqrt{n}-\sqrt{n-1}\right)\) (2)
Từ (1) và (2) suy ra \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
Áp dụng với n = 2,3,4,...,100 được đpcm.
Có :
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...
\(\frac{1}{1990^2}< \frac{1}{1989.1990}\)
=> \(M< \frac{1}{2^2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)
=> \(M< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1989}-\frac{1}{1990}\)
=> \(M< \frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
Vậy M < 3/4