cho tam giác ABC,kẻ đường cao AH,từ H kẻ HD vuông góc với AC,HE vuông góc với AB.Gọi Mn lần lượt là trung điểm của HB,HC.Chứng minh rằng: DEMN là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi gđ của ED và HA là O . Ta có:
tam giác MEH cân => góc HEM=MHE
tam giác OEH cân => góc OEH=OHE
mà góc OHE+MHE=90 độ
=> góc HEM+OEH=90 độ
=> EM vuông góc với ED
DN vuông góc với ED => DEMN là hình thang vuông
Bài làm
a) Vì \(\widehat{BAC}=\widehat{AEH}=\widehat{ADH}=90^0\)
=> tứ giác AEDH là hình chữ nhật.
=> Hai đường chéo AH và ED cắt nhau tại trung điểm mỗi đường. Mà AH = ED ( tính chất đường chéo của hình vuông )
Gọi giao điểm của AH và ED là O
=> Tam giác OHD cân tại O.
=> \(\widehat{AHD}=\widehat{EDH}\) (1)
Mà tam giác DHC vuông tại D
Mà DN là đường trung tuyến ( do N là trung điểm HC )
=> DN = HN = HC
=> Tam giác DHN cân tại N
=> \(\widehat{DHN}=\widehat{HDN}\)( hai góc ở đáy tam giác cân ) (2)
Cộng (1) vào (2), ta được: \(\widehat{AHD}+\widehat{DHN}=\widehat{EDH}+\widehat{HDN}\)
=> \(\widehat{AHC}=\widehat{EDN}\)
hay \(90^0=\widehat{EDN}\)
=> DN vuông góc với ED (3)
Vì tam giác OEH cân tại O ( cmt )
=> \(\widehat{OEH}=\widehat{OHE}\)( hai góc ở đáy tam giác cân ) (4)
Mà tam giác BEH vuông tại H
Mà EM là trung tuyến ( Do N là trung điểm BH )
=> EM = BM = MH
=> Tam giác EMH cân tại M.
=> \(\widehat{MEH}=\widehat{MHE}\) (5)
Cộng (4) và (5) ta được: \(\widehat{OEH}+\widehat{MEH}=\widehat{OHE}+\widehat{MHE}\)
=> \(\widehat{OEM}=\widehat{OHM}\)
hoặc \(\widehat{DEM}=\widehat{AHB}\)
hay \(\widehat{DEM}=90^0\)
=> ME vuông góc với ED (6)
Từ (3) và (6) => ME // DN
=> DEMN là hình thang
Mà \(\widehat{DEM}=90^0\)( cmg )
=> Hình thang DEMN là hình thang vuông ( đpcm )
P/s cái hình thì tự vẽ lấy ok :)))))
Ta có tam giác MEH cân suy ra \(\widehat{HEM}=\widehat{MHE}\)
Tam giác DEH cân suy ra \(\widehat{DHE}=\widehat{MHE}\)
Mà \(\widehat{DEH}+\widehat{MHE}=90^0\)
\(\Rightarrow\widehat{HEM}+\widehat{DEH}=90^0\)
\(\Rightarrow\hept{\begin{cases}EM\perp ED\\DN\perp ED\end{cases}\Rightarrow MN//ED}\)
Nên DEMN là hình thang vuông ( đpcm )
Nóng rã cả mồ hôi
Mình nói cho bạn các bước nhé
B1: Chứng minh ADEH là hình chữ nhật
B2: Trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên EM=MH =1/2 BH, DN=NH =1/2 CH và các tam giác cân EMH,DNH để suy ra góc EMH=góc EHM (1),góc NHD=góc NDH (3)
B3: Gọi O là giao điểm 2 đường chéo của hcn ADEH nên OE=OH tam giác OEH cân rồi góc OEH=góc OHE (2)
B4: Từ (1) và (2) ta được góc MED=góc AHM =90 độ
Tương tự như bước 3 , ta được tam giác OHD cân nên góc OHD=góc ODH (4)
Từ (3) và (4) suy ra: góc NDE=góc AHN=90 độ
Tứ giác DEMN có: góc MED =góc NDE =90 độ nên là hình thang vuông
Mong bạn hiểu và làm được. Chúc bạn học tốt
Ta có: góc HEA = góc EAD = góc ADH (=900)
=> tứ giác AEHD là hình chữ nhật
=> ED = AH.
Gọi T là giao điểm của ED và AH, ta có: ET = TH = TD = AT
Trong tam giác vuông BEH có EM là đường trung tuyến ứng với cạnh huyền BH => EM = MH (1)
Xét tam giác MET và tam giác MHT có:
ME = MH(từ 1); MT chung; ET = TH (chứng minh trên)
=> tam giác MET = tam giác MHT (c-c-c)
=> góc MET= góc MHT =900 (2 góc tương ứng) (2)
Tường tự ta có tam giác HTN = tam giác DTN (c-c-c)
=> góc THN = góc TDN = 900 (2 góc tương ứng) (3)
Từ (2)(3) => EM song song với DN
(vì cùng vuông góc với DE " từ vuông góc đến song song")
=> tứ giác EMND là hình thang và có góc MED = góc EDN (=900)
=> hình thang EMND là hình thang vuông