Giúp mình bài này với ạ :)))) Cho tam giác ABC vuông tại A. Từ một điểm O ở trong tam giác, vẽ OD vuông góc BC, OE vuông góc CA, OF vuông góc AB. Hãy xác định vị trí của điểm O để: OD^2 + OE^2 + OF^2 nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AH là đường cao; hạ OK vuông góc với AH (K thuộc AH).
Đặt P= OD^2 + OE^2 + OF^2
P= OD^2 + OE^2 + OF^2 = OD^2 +OA^2 = AK^2 + KH^2 + OK^2
---> P ≥ AK^2+KH^2 (dấu = xảy ra khi OK=0)
đặt AK=x; KH=y, AH=h, nhận thấy x+y=h.
Áp dụng (x+y)^2 ≥ 4xy hay [(x+y)^2] /2 ≥ 2xy
P ≥ x^2 +y^2 = (x+y)^2 -2xy =h^2 -2xy ≥ h^2 - [(x+y)^2] /2
P ≥ h^2 - (h^2)/2 = (h^2)/2
Dấu = xảy ra khi đồng thời có OK=0 và x=y, tức khi O là trung điểm của AH
trên mạng có lần sau đăng nhớ tìm :))))))))))))) dài qá nên ngại gõ
Trên mạng giải kiểu gì ấy bạn :))) k chắc chắn lắm :<