K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

\(D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}\)

\(\Rightarrow4D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)

\(\Rightarrow4D-D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)

\(-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-\frac{4}{4^4}-...-\frac{2018}{4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow3D=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}\right)-\frac{2019}{4^{2019}}\)

Đặt \(M=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4}+...+\frac{1}{4^{2018}}\)

\(\Rightarrow4M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)

\(\Rightarrow4M-M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)

\(-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-\frac{1}{4^4}-...-\frac{1}{4^{2018}}\)

\(\Rightarrow3M=1-\frac{1}{4^{2018}}\)

\(\Rightarrow M=\frac{1}{3}-\frac{1}{3.4^{2018}}\)

\(\Rightarrow3D=1+\frac{1}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow3D=\frac{4}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}< \frac{4}{3}\)

\(\Rightarrow D< \frac{4}{9}=\frac{40}{90}< \frac{45}{90}=\frac{1}{2}\left(đpcm\right)\)

17 tháng 11 2018

\(B=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}+.....+\frac{1}{5^{2018}}+\frac{1}{5^{2019}}\)

\(\Rightarrow5B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+.......+\frac{1}{5^{2017}}+\frac{1}{5^{2018}}\)

\(\Rightarrow5B-B=1-\frac{1}{5^{2019}}\)

\(\Rightarrow4B=1-\frac{1}{5^{2019}}\)

\(\Rightarrow B=\frac{1-\frac{1}{5^{2019}}}{4}< \frac{1}{4}\left(đpcm\right)\)

15 tháng 5 2019

Để xem ai thông minh mà biết cách làm nha , bài này không khó đâu , cũng khá dễ đấy

7 tháng 10 2021

a) \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{2018}{2019!}\\ =\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+...+\left(\dfrac{1}{2018!}-\dfrac{1}{2019!}\right)\\ =1-\dfrac{1}{2019!}< 1\)

7 tháng 10 2021

b) \(\dfrac{1\cdot2-1}{2!}+\dfrac{2\cdot3-1}{3!}+...+\dfrac{999\cdot1000-1}{1000!}\\ =\dfrac{1\cdot2}{2!}-\dfrac{1}{2!}+\dfrac{2\cdot3}{3!}-\dfrac{1}{3!}+...+\dfrac{999-1000}{1000!}-\dfrac{1}{1000!}\\ =\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{1!}-\dfrac{1}{3!}+\dfrac{1}{2!}-\dfrac{1}{4!}+...+\dfrac{1}{999!}+\dfrac{1}{1000!}\\ =1+1-\dfrac{1}{1000!}\\ =2-\dfrac{1}{1000!}< 2\)

7 tháng 1 2019

Ta có: S= 1+2+22+23+..............+22018+22019

S= (1+2+22+23)+............+(22016+22017+22018+22019)

S=1(1+2+22+23)+..........+22016(1+2+22+23)

S=1.(1+2+4+8)+.................+22016(1+2+4+8)

S=1.15+.....................+22016.15

S=15.(1+.....+22016)

S=3.5.(1+......+22016) \(⋮\) 3

Vậy S chia hết cho 3 ( đpcm).

6 tháng 1 2019

mik cần gấp