Cho hcn ABCD, kẻ AH vuông góc với đường chéo BD.
a. Chứng minh BC2=DH.DB.
b. Gọi S là trung điểm của BH, R là trung điểm của AH. Chứng minh SH.BD=SR.DC.
c.Gọi T là trung điểm của DC. Chứng minh tứ giác DRST là hình bình hành.
d. Tính số đo góc AST.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác vuông AHD và BDC có ∠ADH = ∠CBD (SLT)
⇒ ΔAHD ∼ ΔDCB (g.g)
b) Ta có S, R là trung điểm của HB và AH nên SR là đường trung bình của ΔABH ⇒ SR // AB
⇒ ∠HSR = ∠HBA (đồng vị)
Mà ∠HBA = ∠D1
⇒ HSR = ∠D1
Do đó ΔSHR ∼ ΔDCB (g.g)
c) Ta có SR // AB và SR = AB/2 (cmt), TD = CD/2
mà AB = CD và AB // CD (gt)
⇒ SR // DT và SR = DT
Do đó Tứ giác DRST là hình bình hành
d) Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)
⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA
Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA
Vậy ∠AST = 90o
a: Xet ΔAHD vuông tại H và ΔDCB vuông tại C có
góc ADH=góc DBC
=>ΔAHD đồng dạng vơi ΔDCB
c: Xét ΔHAB có HN/HA=HM/HB
nên MN//AB
=>MN vuông góc AD
mà AH vuông góc DM
và AH cắt MN tại N
nên N là trực tâm
=>ND vuông góc AM
=>ME vuông góc AM
a: Xét ΔHAB có
N là trung điểm của HB
M là trung điểm của HA
Do đó: NM là đường trung bình của ΔAHB
Suy ra: \(NM=\dfrac{AB}{2}=2\left(cm\right)\)
a: Xét ΔABD vuông tại A có AH là đường cao
nên \(AD^2=DH\cdot DB=BC^2\)
c: Xét ΔHAB có
R là trung điểm của HA
S là trung điểm của HB
Do đó: RS là đường trung bình
=>RS//AB và RS=AB/2
=>RS//DT và RS=DT
=>RSTD là hình bình hành
a: Xét tứ giác MFCE có
\(\widehat{MFC}=\widehat{MEC}=\widehat{FCE}=90^0\)
Do đó: MFCE là hình bình hành
Suy ra: MC=EF