tìm các số a,b,c
sao cho abc - ac = 2cb+bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
198 nha bạn hiền
Mình kết bạn với bạn rồi đấy
k minh nha
Làm ơn đó
Không mất tính tổng quát, giả sử \(a\ge b\ge c\Rightarrow ab+bc+ca\le ab+ab+ab=3ab\)
\(\Rightarrow abc< 3ab\Rightarrow c< 3\Rightarrow c=2\)
\(\Rightarrow2ab< ab+2\left(a+b\right)\Rightarrow ab< 2\left(a+b\right)\)
\(\Rightarrow ab-2b-2b+4< 4\Rightarrow\left(a-2\right)\left(b-2\right)< 4\)
\(\Rightarrow\left(a-2\right)\left(b-2\right)=\left\{1;2;3\right\}\)
- Với \(\left(a-2\right)\left(b-2\right)=1\Rightarrow a=b=3\)
- Với \(\left(a-2\right)\left(b-2\right)=2\Rightarrow\left[{}\begin{matrix}a=4;b=3\\a=3;b=4\end{matrix}\right.\) (loại)
- Với \(\left(a-2\right)\left(b-2\right)=3\Rightarrow\left[{}\begin{matrix}a=5;b=3\\a=3;b=5\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(2;3;5\right)\) và các hoán vị của chúng
a) Ta có: \(\Delta ABC\) vuông tại A áp dụng định lý Py-ta-go ta có:
\(AC=\sqrt{BC^2+AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Các tỉ số lượng giác của góc B là:
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
\(cosB=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)
\(cotg=\dfrac{AB}{AC}=\dfrac{3}{4}\)
Các câu b), c) làm tương tự nhé
a: AC=căn 5^2-3^2=4cm
sin B=AC/BC=4/5
cos B=AB/BC=3/5
tan B=4/3
cot B=1:4/3=3/4
b: AB=căn 13^2-12^2=5cm
sin B=AC/BC=12/13
cos B=AB/BC=5/13
tan B=12/13:5/13=12/5
cot B=1:12/5=5/12
c: BC=căn 4^2+3^2=5cm
sin B=AC/BC=4/5
cos B=AB/BC=3/5
tan B=4/3
cot B=3/4
vẽ DE⊥CADE⊥CA. F là trung điểm của CD.
ta có FE là đường trung tuyến ứng với cạnh huyền của tam giác vuông CDE, nên
FE=CF=FD=BC=CD2FE=CF=FD=BC=CD2
do đó tam giác CFE cân.
đồng thời :180o−BCAˆ=FCEˆ⇒FCEˆ=60o180o−BCA^=FCE^⇒FCE^=60o
nên tam giác CFE đều. => CF=FE=CE
xét tam giác BFE và DCE có:
CE=FEFCEˆ=CFEˆ=60oBF=CD(BC=CF=FD)CE=FEFCE^=CFE^=60oBF=CD(BC=CF=FD)
do đó tam giác BFE = tam giác DCE (c-g-c)
FBEˆ=CDEˆ=900−600=300FBE^=CDE^=900−600=300
=> tam giác BED cân tại E, nên
BE=ED (1)
tam giác ABC : ABCˆ+ACBˆ+BACˆ=180o⇒CABˆ=1800−(ABCˆ+ACBˆ)=1800−1650=150ABC^+ACB^+BAC^=180o⇒CAB^=1800−(ABC^+ACB^)=1800−1650=150
đồng thời:
EBAˆ+FBEˆ=CBAˆ=450⇒EBAˆ=450−300=150EBA^+FBE^=CBA^=450⇒EBA^=450−300=150
nên EBAˆ=CABˆ=150EBA^=CAB^=150
do đó tam giác BEA cân tại E.
=> BE=AE (2)
từ (1) và (2) => ED=AE.
=> tam giác ADE cân tại E.
đồng thời tam giác ADE có DEAˆ=90oDEA^=90o
nên tam giác ADE là tam giác cân vuông.
⇒EDAˆ=DAEˆ=9002=45o⇒EDA^=DAE^=9002=45o
ta lại có: BDAˆ=CDEˆ+EDAˆ=30o+45o=75o