cho hình thang ABCD có AB//CD . tia phân giác góc D đi qua trung điểm E của BC . chứng minh
a ) AD=AB+CD
b) AE là tia phân giác góc BAD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ F la trung điểm AD
\(\left\{{}\begin{matrix}AF=FD\\BE=EC\end{matrix}\right.\Rightarrow EF\) là đtb hthang ABCD
\(\Rightarrow EF//AB//CD;2EF=AB+CD\left(1\right)\)
\(\left\{{}\begin{matrix}\widehat{D_2}=\widehat{E_1}\left(so.le.trong\right)\\\widehat{D_1}=\widehat{D_2}\left(t/c.phân.giác\right)\end{matrix}\right.\Rightarrow\widehat{D_1}=\widehat{E_1}\Rightarrow\Delta DEF.cân\Rightarrow DF=EF\)
Mà \(DF=\dfrac{1}{2}AD\left(F.là.trung.điểm.AD\right)\Rightarrow EF=\dfrac{1}{2}AD\)
\(\Rightarrow2EF=AD\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AD=AB+CD\)
\(2,EF=\dfrac{1}{2}AD\Rightarrow\Delta AED\) vuông tại E
\(\Rightarrow\widehat{A_1}+\widehat{D_1}=90^0\)
Mà \(\widehat{D_1}+\widehat{E_2}=\widehat{E_1}+\widehat{E_2}=90^0\)
\(\Rightarrow\widehat{A_1}=\widehat{E_2}\left(3\right)\)
Mà \(AB//EF\Rightarrow\widehat{E_2}=\widehat{A_2}\left(4\right)\)
\(\left(3\right)\left(4\right)\Rightarrow\widehat{A_1}=\widehat{A_2}\Rightarrow AE\) là p/g \(\widehat{DAB}\)
a: Xét ΔABE và ΔFCE có
góc EBA=góc ECF
EB=EC
góc BEA=góc CEF
=>ΔABE=ΔFCE
=>EA=EF
=>E là trung điểm của AF
b: Xét ΔDAF có
DE vừa là phân giác, vừa là trung tuyến
=>ΔDAF cân tại D
=>DA=DF=DC+CF=DC+AB
c: góc BAE=góc AFD
=>góc BAE=góc DAE
=>AE là phân giác góc DAB
1: Xét ΔADE vuông tại D có \(\widehat{DAE}=\widehat{DEA}\left(=\widehat{EAB}\right)\)
nên ΔADE vuông cân tại D
Suy ra: AD=DE
mà DC=2DE
nên DC=2AD
hay AB=2AD
2: Ta có: ΔADE vuông cân tại D
mà DN là đường trung tuyến ứng với cạnh huyền AE
nên DN là đường cao ứng với cạnh AE
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath
a: Xét ΔABE có \(\widehat{BAE}=\widehat{BEA}\left(=\widehat{DAE}\right)\)
nên ΔABE cân tại B
hay BA=BE
b: Ta có: ΔBAE cân tại B
mà BF là đường phân giác ứng với cạnh AC
nên BF là đường cao ứng với cạnh AC